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A multidimensional extension of the HRPG method (doi:10.1016/j.cma.
2009.10.009) using the lowest order block finite elements is presented. First,
we design a nondimensional element number that quantifies the charac-
teristic layers which are found only in higher dimensions. This is done by
matching the width of the characteristic layers to the width of the parabolic
layers found for a fictitious 1d reaction–diffusion problem. The nondimen-
sional element number is then defined using this fictitious reaction coeffi-
cient, the diffusion coefficient and an appropriate element size. Next, we
introduce anisotropic element length vectors li and the stabilization pa-
rameters αi,βi are calculated along these li. Except for the modification
to include the new dimensionless number that quantifies the characteris-
tic layers, the definitions of αi,βi are a direct extension of their counter-
parts in 1d. Using αi,βi and li, objective characteristic tensors associated
with the HRPG method are defined. The numerical artifacts across the
characteristic layers are manifested as the Gibbs phenomenon. Hence, we
treat them just like the artifacts formed across the parabolic layers in the
reaction-dominant case. Several 2d examples are presented that support
the design objective—stabilization with high-resolution.
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1 introduction

It is well known that the solution to the singularly perturbed convection–diffusion–
reaction problem may develop two types of layers—exponential and parabolic layers.
The first-order derivatives in the direction perpendicular to the exponential layers
have a magnitude of O(1/k). Here k is the diffusion coefficient which may take ar-
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bitrarily small values. For the parabolic layers these derivatives have a magnitude of
O(1/

√
k) and hence they are of larger width than the exponential layers [1]. The ex-

ponential layers are usually found in the convection-dominant cases near the outflow
boundary or close to the regions where the source term is non regular. Parabolic lay-
ers are found in the reaction-dominant cases near the boundary or close to the regions
where the source term is non regular and in the convection-dominated cases across
the characteristic lines of the solution.

The numerical artifacts observed in the solution of the singularly perturbed CDR
problem using the Bubnov–Galerkin FEM (BG-FEM) can be broadly classified into
three groups: a) spurious global oscillations, b) Gibbs phenomenon and c) numerical
dispersion. The spurious global oscillations are typically found in the solution of the
stationary problem in the presence of exponential layers. The Gibbs phenomenon is a
spurious oscillation that occurs when using a truncated Fourier series or other eigen
function series at a simple discontinuity. It is characterized by an initial overshoot and
then a pattern of undershoot-overshoot oscillations that decrease in amplitude further
from the discontinuity. Unlike the global instability, the Gibbs phenomenon does not
amplify arbitrarily as k → 0. A classical example is the L2 projection of a given
discontinuous function in any subspace. Typical examples where we can observe the
Gibbs phenomenon are the BG-FEM solutions a) of the reaction-dominant stationary
CDR problem, b) across the characteristic lines in the convection-dominant stationary
CDR problem and c) of the transient CDR problem using very small time steps with
a discontinuous initial solution. Thus, the Gibbs phenomenon is usually observed
in the presence of parabolic layers. Numerical dispersion is an artifact found in the
solution of the transient CDR problem and is a characteristic feature of the spatial
discretization. It occurs as the wave numbers in the amplitude spectra of the initial
solution travel with phase and group velocities distinct from the one governed by the
physical dispersion relation.

Several stabilized methods were proposed to control this global instability [2–14].
A thorough comparison of some of these methods can be found in [15]. Several shock-
capturing nonlinear Petrov–Galerkin methods were proposed to control the Gibbs os-
cillations observed across characteristic internal/boundary layers for the convection-
diffusion problem [16–28]. A thorough review, comparison and state of the art of
these and several other shock-capturing methods for the convection-diffusion equa-
tions, therein named as spurious oscillations at layers diminishing methods, was done in
[29]. Reactive terms were not considered in the design of these methods and hence
they fail to control the localized oscillations in the presence of these terms. Exceptions
to this are the CAU method [18], the methods presented in [22, 24] and those that take
the CAU method as the starting point [20, 25, 26]. Nevertheless the expressions for
the stabilization parameters therein were never optimized for reactive instability and
often the solutions are over-diffusive in these cases.

Several methods were built upon the existing frameworks of globally stabilized
methods to control the Gibbs phenomenon in the reaction dominant cases [30–43].
Generally the homogeneous steady CDR problem in 1d has two fundamental solu-
tions. Likewise, the characteristic equation associated with linear stabilized methods
which result in compact stencils are quadratic and hence have two solutions. Thus
in principle using two stabilization parameters (independent of the boundary con-
ditions) linear stabilized methods which result in compact stencils can be designed
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to be nodally exact in 1d. Following this line several ‘two-parameter methods’ viz.
[31, 33, 40] were designed to be nodally exact for the stationary problem in 1d.

Some methods were proposed in [44, 45] in order to control the Gibbs phenomenon
see in the initial stages of the transient evolution of a discontinuous function us-
ing very small time steps. Control over the dispersive oscillations for the transient
convection-diffusion problem via linear Petrov–Galerkin methods were discussed in
[46] and using space-time finite elements in [47]. As for the linear methods, optimiz-
ing the expressions of the stabilization parameters to attain monotonicity will lead to
solutions that are at most first-order accurate.

It was pointed out in [48] that in 1d the performance of the DC [17] and CD [21]
methods are similar to that of the SUPG method. This is due to the fact that in 1d

u‖ = u (see Table 1) and here the notion of crosswind directions does not exist. On
the other hand the nonlinear shock-capturing term introduced by the CAU method
are retained in 1d and thus in principle are able to control the Gibbs and dispersive
oscillations. This feature does carry over to all the methods that have the shock-
capturing term similar to that in the CAU method viz. the methods presented in
[20, 22, 24–26]. Unfortunately as pointed out in [29] and [48, Section 5.7.1], these
methods are often over diffusive.

This paper is a continuation of [48] wherein a nonlinear high-resolution Petrov–
Galerkin (HRPG) method was presented for the convection–diffusion–reaction (CDR)
problem in 1d. The structure of the method in 1d is identical to the consistent approx-
imate upwind (CAU) Petrov–Galerkin method [18] except for the definition of the
stabilization parameters. The prefix ‘high-resolution’ is used here in the sense popu-
larized by Harten in the finite-difference and finite-volume communities, i. e. second-
order accuracy for smooth/regular regimes and good shock-capturing in non regular
regimes. In this paper we develop an extension to multi dimensions of the HRPG
method for the singularly perturbed CDR problem using the lowest order block finite
elements. By blocks we mean Cartesian product of intervals and by lowest order we
refer to multi-linear finite element (FE) interpolation on these blocks.

The outline of this paper is as follows. In Section 2 we present the statement of the
CDR problem in both the strong and the weak forms. The statement of the HRPG
method is also given here in both the semi-discrete and fully-discrete forms. In Sec-
tion 3 we explain concisely the origins and the motivation behind the procedure to
calculate the stabilization parameters of the HRPG method as proposed for the 1d

CDR problem in [48]. In Section 4 we discuss the numerical artifacts found across the
characteristic layers which are manifested as the Gibbs phenomenon and comment
on the strategy used to treat them. In Section 5 we design a nondimensional element
number that quantifies the characteristic internal/boundary layers. Anisotropic ele-
ment length vectors li are introduced in Section 6 and using them objective character-
istic tensors h and H associated with the HRPG method are defined. The stabilization
parameters αi,βi used in the definition of h, H are defined in Section 7 by a direct
extension of their respective expressions in 1d. The definitions of βi are updated to in-
clude the new dimensionless number introduced in Section 5. In Box 2 we summarize
the HRPG method in multi dimensions. Several numerical examples are presented
in Section 8 that throws light on the performance of the proposed method for a wide
range of problem data. Finally we arrive at some conclusions and outlook in Section
9.
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2 problem statement

The statement of the multidimensional CDR problem in the strong form is,

R(φ) :=
∂φ

∂t
+ u ·∇φ−∇ · (k∇φ) + sφ− f(x) = 0 in Ω (1a)

φ(x, t = 0) = φ0(x) in Ω (1b)

φ = φp on ΓD (1c)

k∇φ · n + gp = 0 on ΓN (1d)

where u is the convection velocity, k and s are the diffusion and reaction coeffi-
cients respectively, f(x) is the source, φ0(x) is the initial solution, φp and gp are the
prescribed values of φ and the diffusive flux at the Dirichlet and Neumann bound-
aries respectively and n is the normal to the boundary.

For the solution of the problem (1) we introduce the following space of functions:

V := {w : w ∈ H1(Ω) and w = φp on ΓD} (2a)

V0 := {w : w ∈ H1(Ω) and w = 0 on ΓD} (2b)

where Hm(Ω) is the usual Sobolev space of functions with mth derivatives square
integrable. The weak form of the problem (1) can be expressed as follows: Find
φ : [0, T ] 7→ V such that ∀w ∈ V0 we have,∫

Ω

w
∂φ

∂t
dΩ+ a(w,φ) = l(w) (3a)

a(w,φ) :=
∫
Ω

w [u ·∇φ+ sφ] + k∇w ·∇φ dΩ (3b)

l(w) :=

∫
Ω

wf(x) dΩ−

∫
ΓN

wgp dΓN (3c)

Let Vh ⊂ V be a subspace obtained via any appropriate discretization with h being
the discretization size parameter. The statement of the Galerkin method applied to
the weak form of the problem (3) is: Find φh : [0, T ] 7→ Vh such that ∀wh ∈ Vh0 we
have, ∫

Ω

wh
∂φh
∂t

dΩ+ a(wh,φh) = l(wh) (4)

Consider a partition of the domain Ω generated by a regular family of elements K.
We follow [2] to describe a certain class of Petrov–Galerkin methods which account for
weights that are discontinuous across element boundaries. The perturbed weighting
function is written as w̃h = wh+ph, where ph is the perturbation that account for the
discontinuities. The statement of these class of Petrov–Galerkin methods is as follows:
Find φh : [0, T ] 7→ Vh such that ∀wh ∈ Vh0 we have,∫

Ω

wh
∂φh
∂t

dΩ+ a(wh,φh) +
∑
K

∫
K

phR(φh) dΩ = l(wh) (5)

The form of Eq. (5) can also be derived using the finite calculus (FIC) approach
by expressing the balance equation in a domain of finite size and retaining higher
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Method Perturbation (ph) Remarks

SUPG[2] τu ·∇wh

MH[16] Cei
Cei ∈ {−

1

3
,
2

3
}, i = 1, 2, 3∑

i C
e
i = 0

DC[17] τ1u ·∇wh + τ2u‖ ·∇wh u‖ :=
u · ∇φh
|∇φh|2

∇φh
CAU[18],

τ1u ·∇wh + τ2ur ·∇wh ur :=
R(φh)

|∇φh|2
∇φhCCAU[20]

CD[21] τ1u ·∇wh +α2`∇wh · [I − û⊗ û] · ûr û :=
u
|u|

, ûr :=
ur

|ur|

ûr =
sgn[R(φh)]

|∇φh|
∇φh

SAUPG[25],
τ[λu + (1− λ)ur] ·∇wh λ is a smoothness measure.

Mod.CAU[21]
FIC[14] hfic ·∇wh here hfic is a characteristic

length vector which may be
defined in a linear or nonlin-
ear fashion.

HRPG[48] [h + H · ûr] ·∇wh h,H are frame-independent
linear characteristic length
tensors based on the element
geometry (see Section 6).

Table 1: Perturbations associated with Petrov–Galerkin methods [48, Table 1].

order terms [14, 49]. The HRPG method, whose design in 1d was presented in [48], is
defined as Equation (5) along with the following definition of ph:

ur :=
R(φh)

|∇φh|2
∇φh; ⇒ ûr :=

ur

|ur|
=

sgn[R(φh)]
|∇φh|

∇φh (6a)

ph := [h + H · ûr] ·∇wh = (h ·∇wh) +
sgn[R(φh)]

|∇φh|
(∇wh ·H ·∇φh) (6b)

where ‘sgn’ represents the signum function that returns the sign of its argument,
h and H are frame-independent linear characteristic length tensors of first and second
order, respectively. The role of these tensors is to allow the treatment of the element
anisotropy. We refer to Table (1) for a comparison of the HRPG method with the
SUPG[2], FIC[14] and some of the existing shock-capturing methods.

Remark 1: From Eq. (6) and Table (1) the HRPG method could be understood
as the combination of upwinding plus a nonlinear discontinuity-capturing operator.
The distinction is that in general the upwinding provided by h is not streamline
and the discontinuity-capturing provided by H · ûr is neither isotropic nor purely
crosswind. Of course defining h := τu and H := (β`)I or H := (β`)[I − û⊗ û] one
would recover (except for the definitions of the stabilization parameters) the CAU
and the CD methods respectively. Note that one may arrive at the HRPG method
via the FIC equations wherein the characteristic length is defined as hfic := h + H · ûr.
From this point of view the HRPG method can be presented as ‘FIC-based’.
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Using the generalized trapezoidal method for integrating the semi-discrete equa-
tion (5) from tn to tn+1 = tn +∆t and taking ph as defined in Eq. (6) we get,∫

Ω

wh
φn+θh −φnh

θ∆t
dΩ+ a(wh,φn+θh ) +

∑
K

∫
K

(h ·∇wh)R(φn+θh ) dΩ

+
∑
K

∫
K

|R(φn+θh )|

|∇φn+θh |
(∇wh ·H ·∇φn+θh ) dΩ = l(wh) (7a)

R(φn+θh ) :=
φn+θh −φnh

θ∆t
+ u ·∇φn+θh −∇ · (k∇φn+θh ) + sφn+θh − f(x) (7b)

φn+1h =
1

θ
φn+θh −

(1− θ)

θ
φnh (7c)

where 0 < θ 6 1 is the parameter of the generalized trapezoidal method. Clearly,
if one is interested in the choice θ = 0 then the temporal derivative term (φn+θh −

φnh)/(θ∆t) that appears in Eqs. (7a) and (7b) should be replaced with (φn+1h −φnh)/∆t.
In practice θ would not be taken below the value of 1/2 for unconditional temporal
stability. In the transient numerical examples presented in Section 8.2 we have used
the implicit midpoint rule which corresponds to the choice θ = 1/2.

3 hrpg method in 1d

Naturally, the tensors h and H are reduced to scalar quantities in 1d. Taking the
element size as `, the counterparts of h and H in 1d are defined as

h :=
α

2
`, H :=

β

2
` (8)

where α,β are stabilization parameters whose definition in 1d is summarized in Box
1. We now explain concisely the origins and the motivation behind this procedure to
calculate the parameters α,β and refer to [48] for further details.

The HRPG method in 1d was designed using the divide and conquer strategy, i. e.
the original CDR problem is further divided into smaller model problems where the
different types of numerical artifacts that plague the original problem are singled-
out and the expressions for the stabilization parameters are derived/updated to treat
them effectively.

For the stationary CDR problem and by dropping the linear upwinding term (i. e.
choosing α = 0), the expression in 1d of the stabilization parameter β multiplying
the shock-capturing term is found by relating it with the diffusion introduced by the
discrete-upwinding operation [50] on the Galerkin terms. The proposed expression
for β is (see [48, Section 5.4]):

β := max
{[
2

3

(
|σ|+ 3

|σ|+ 2

)
−

(
4

ω+ 4|γ|

)]
, 0
}

(9)

where, γ := (u`/2k) ,ω := (s`2/k) and σ := (ω/2γ) = (s`/u) are the element Peclect
number, a velocity independent dimensionless number and the Damköler number
respectively.

It was pointed out earlier in [46] that the transient term can be modeled as an in-
stantaneous reaction term whose coefficient is inversely proportional to the employed
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γ :=
u`

2k
; ω :=

s`2

k
; σ :=

s`

u

λ :=
1

3(1+
√

|σ|)
; α := λ sgn(u)max

{[
1−

1

|γ|

]
, 0
}

δ :=
1

θ∆t

‖ φn+θh −φnh ‖∞
‖ φn+θh ‖∞

ũ := u−
α`s

2
−
α`δ

2
; k̃ := k+

α`u

2
; s̃ := s+ δ

γ̃ :=
ũ`

2k̃
; ω̃ :=

s̃`2

k̃
; σ̃ :=

s̃`

ũ

β := max
{[
2

3

(
|σ̃|+ 3

|σ̃|+ 2

)
−

(
4

ω̃+ 4|γ̃|

)]
, 0
}

Box 1: Procedure to calculate the stabilization parameters α,β in 1d [48, Section 5.6,
pp. 537]. Where ` and ∆t are the element size and time-step, respectively. The
time integration is done by the generalized trapezoidal method.

time step. This observation is also the point of departure for methods designed to
treat the small time step oscillations (essentially they are Gibbs phenomenon) [44, 45].
Assuming that the discretization in time is done using the generalized trapezoidal
method we define for each element a nonlinear pseudo-reaction coefficient δ as fol-
lows.

δ :=
1

θ∆t

‖ φn+θh −φnh ‖∞
‖ φn+θh ‖∞ (10)

Further, it was pointed out earlier in [22] that the linear upwinding term can be in-
terpreted as to contribute additional convection (negative upwind direction) and dif-
fusion (rank one tensor) effects. Using these ideas the effective convection, diffusion
and reaction coefficients (for the transient problem and using the linear upwinding
term) are calculated as follows.

ũ := u−
α`s

2
−
α`δ

2
; k̃ := k+

α`u

2
; s̃ := s+ δ (11)

Thus, for the transient case and/or including the linear upwinding term, it is these
effective coefficients that are used in the expression for β derived earlier. Thus,

γ̃ :=
ũ`

2k̃
; ω̃ :=

s̃`2

k̃
; σ̃ :=

s̃`

ũ
(12a)

β := max
{[
2

3

(
|σ̃|+ 3

|σ̃|+ 2

)
−

(
4

ω̃+ 4|γ̃|

)]
, 0
}

(12b)

Remark 2: For the steady-state case, β depends only on the problem data, whereas
for the transient case a nonlinear dependence exists due to Eq. (10). Such a nonlinear
dependence which vanishes at steady state is necessary for the independence of the
steady-state solution on the used time step. This additional nonlinearity which only
affects β does not seem to increase the number of iterations required for convergence.
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It remains to define the parameter α that controls the fraction of linear perturbation
term in the HRPG method. For the 1d CDR problem the choice of the parameters: α =

0 and β given by Eq. (12b) was sufficient to obtain accurate solutions for a wide range
of problem data. Nevertheless for the transient problem the presence of the linear
perturbation terms improved the convergence of the nonlinear iterations. Numerical
experiments suggested α ∈ [0, 1/3] which means that the approximations/conjecture
used in the design process does not hold for larger fractions of the linear perturbation
term. The proposed expression for α is:

α := λ sgn(u)max
{[
1−

1

|γ|

]
, 0
}

; λ :=
1

3(1+
√

|σ|)
(13)

Finally, we discuss the limit behavior of the stabilization parameters α and β in 1d.
In the advective limit we have γ � ω i. e. σ → 0 and in the reactive limit we have
ω� γ i. e. σ→∞. In these respective limit cases we get from Eq. (13),

lim
σ→0

α =
sgn(u)
3

max
{[
1−

1

|γ|

]
, 0
}

; lim
σ→∞α = 0 (14)

In the diffusive limit we have both γ,ω → 0. In this case, as is required, from Eq.
(13) we get α = 0. In the presence of the linear upwinding term (i. e. α 6= 0) it is more
appropriate to discuss the effective limit behavior (convective, diffusive and reactive)
of β. When the effective convection term dominates, we have γ̃ � ω̃ i. e. σ̃ → 0. On
the contrary, when the effective reaction term dominates we have ω̃� γ̃ i. e. σ̃→∞.
In these respective limit cases we get from Eq. (12b),

lim
σ̃→0

β = max
{[
1−

1

|γ̃|

]
, 0
}

; lim
σ̃→∞β = max

{[
2

3
−
4

ω̃

]
, 0
}

(15)

When the effective diffusion term is dominant, we have γ̃, ω̃ → 0. In this case, as
is required, from Eq. (12b) we get β = 0. Recall that the small time step limit falls
within the case of the dominant effective reaction term. Thus, even for a pure diffusion
problem, β→ 2/3 (as is required for the L2 projection problem [48]), should the small
time step limit be reached. The motivation to include this value for β in the small
time step limit is based on the observation that the numerical artifacts found in this
case are similar to the Gibbs phenomenon observed in L2 projections. It was shown in
[48], that these respective limit behaviors for β are required to attain high-resolution
results.

4 gibbs phenomenon across characteristic layers

The characteristic internal/boundary layers are usually found only in higher dimen-
sions and hence have no instances in 1d [1]. In other words we do not have a straight-
forward quantification of the characteristic layers in 1d. For this reason a direct exten-
sion of the definition of the stabilization parameters α,β derived for 1d will not be
efficient to resolve these layers.

The numerical artifacts that are formed across the parabolic layers are usually man-
ifested as the Gibbs phenomenon. Nevertheless there exists a subtle difference1 be-
tween the numerical artifacts formed across the characteristic layers and those formed

1 related to the cause and size of these numerical artifacts
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across the layers in the reaction-dominant cases. Consider a rectangular domain dis-
cretized by structured bilinear block finite elements. Let A represent the matrix of the
stencil coefficients of a generic compact stencil corresponding to any interior node (i,j)
of the considered structured mesh. For instance, if the standard mass matrix obtained
in the Galerkin FEM be assembled for a structured rectangular mesh then we may
express the corresponding stencil as follows:

Am :=
`2
6
{1, 4, 1}T {1, 4, 1}

`1
6

=
`1`2
36



1 4 1

4 16 4

1 4 1


 (16)

where the superscript ‘T’ in the above equation denotes the transpose operator. The
matrix Am yields a stencil as shown below.

Am 7→ `1`2
36


Φi−1,j+1 + 4Φi,j+1 +Φi+1,j+1+

4Φi−1,j + 16Φi,j + 4Φi+1,j+

Φi−1,j−1 + 4Φi,j−1 +Φi+1,j−1

 (17)

The stencil coefficient matrix associated with the convective term in the Galerkin
FEM can be expressed as follows:

Ac :=
`2
6
{1, 4, 1}T {−1, 0, 1}

u1
2

+
u2
2
{1, 0,−1}T {1, 4, 1}

`1
6

(18)

Note that one may arrive at the terms in Eq.(16) and Eq.(18) via a 1d mass type
averaging of their respective counterparts in 1d, i. e. replacing {1, 4, 1}(`1/6) with
(`2/6){1, 4, 1}T {1, 4, 1}(`1/6) and {−1, 0, 1}(u1/2) with (`2/6){1, 4, 1}T{−1, 0, 1}(u1/2) etc.
Although this 1d mass type averaging leads to a higher-order approximation for
smooth solution profiles, it unfortunately leads to the Gibbs phenomenon across lay-
ers. Unlike in the reaction-dominant case where it is the numerical solution that
undergoes the 1d mass type averaging, in the convection-dominant case it is the
derivatives of the numerical solution that undergoes the same. Thus, the Gibbs phe-
nomenon across the characteristic layers in the later case is proportional to the vari-
ation in the derivatives of the solution across the characteristic layers. Despite this
subtle difference in the Gibbs phenomenon associated with the characteristic layers in
the convection-dominated case, we choose to treat them by the same strategy that we
use to treat the numerical artifacts about the parabolic layers in the reaction-dominant
case. The pros and cons of employing this strategy will be discussed later in Section
8.3.

5 quantifying characteristic layers

In this section we design a nondimensional element number that quantifies the char-
acteristic internal/boundary layers. By quantification we mean that its should serve a
similar purpose as the element Peclet number γ for the exponential layers in convec-
tion dominant cases and the dimensionless number ω := 2γσ for the parabolic layers
in the reaction dominant cases.
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Consider the following singularly perturbed (k� u) convection–diffusion problem
in 2d:

u
∂φ

∂x
− k

(
∂2φ

∂x2
+
∂2φ

∂y2

)
= 0 in Ω (19a)

φ = φp on Γ (19b)

where, Ω is a rectangular domain ABCD as shown in Figure 1a, Γ is the domain
boundary and φp is the prescribed value of φ on Γ . The origin of the 2d axes is
taken as the midpoint of AD. Consider φp = 0 everywhere except on AD where it is
defined as follows:

φp(0,y) = f(y) := H(y+ a) − H(y− a),a > 0 (20a)

H(y) :=
1+ sgn(y)

2
=


0 y < 0

0.5 y = 0

1 y > 0

(20b)

The function f(y) is discontinuous at y = ±a and its shape can be described as a
rectangular pulse. A well known virtue of the solution φ(x,y) is that these disconti-
nuities are immediately smoothed out in the interior of the domain, thus leading to
parabolic layers along the characteristic lines of the problem [1]. In accordance with
singular perturbation theory and by the method of matched asymptotic expansions
[51], the leading term describing the characteristic layer is given by,

φ(x,y) ≈ 1
2

[
erf
(√

u

4kx
(y+ a)

)
− erf

(√
u

4kx
(y− a)

)]
(21)

where ‘erf’ represents the error function and is defined as follows:

erf(x) :=
2√
π

∫x
0

e−z
2

dz (22)

The approximation given in Eq.(21) is uniformly valid to O(1) in a region away
from the exponential layers formed near the boundary BC [51]. Figure 1b illustrates
the solution given by Eq.(21) about a cross-section SS ′ (cf. Figure 1a) located at a
distance x from the boundary AD.

Consider now the heat equation posed on an infinite domain:

∂φ

∂t
− k

∂2φ

∂y2
= 0, in Ω := {(y, t) | y ∈ (−∞,∞), t ∈ [0,∞)} (23a)

φ(y, t = 0) = f(y) f(y) := [H(y+ a) − H(y− a)] ,a > 0 (23b)

Note that we have initialized the solution with a function f(y) that was used earlier
in Eq.(20a) to prescribe the Dirichlet boundary condition. The exact solution for the
problem (23) can be expressed as follows:

φ(y, t) =
1

2

[
erf
(
y+ a√
4kt

)
− erf

(
y− a√
4kt

)]
(24)

Clearly, replacing twith (x/u) in Eq.(24) we recover the leading term describing the
characteristic layers given by Eq.(21). Note that (x/u) is the time required to travel a
distance x along the characteristic lines. This resemblance is due to the fact that in
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(a)
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D

B
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x

u

φ(x,y) on boundary AD

φ(x,y) at an interior
cross−section SS’

(b)

Figure 1: A singularly perturbed convection–diffusion problem. (a) The problem do-
main ABCD and boundary conditions; (b) The solution about a cross-section
SS ′ located at a distance x from the boundary AD

regions far-away from the domain boundaries the convective and diffusive effects do
not interact, i. e. convection just carries the diffusing solution along the characteristic
lines [52].

Next, we try to relate the solution of the heat equation with the solution of the
diffusion–reaction problem. The statement of the diffusion–reaction problem posed
on an infinite domain is:

−k
d2φ

dy2
+ sφ = sf(y) in Ω := {y | y ∈ (−∞,∞)} (25a)

φ(y) = 0 at y = ±∞ (25b)

The exact solution for the above problem can be expressed as follows:

φ(y) =
sgn(y+ a)

2

[
1− e−ξ|y+a|

]
−

sgn(y− a)
2

[
1− e−ξ|y−a|

]
(26)

where, ξ :=
√
s/k. Figures 2a and 2b illustrate the solution of the heat equation

given by Eq.(24) and the solution of the diffusion–reaction problem given by Eq.(26)
respectively. Clearly these two solutions have distinct profiles. Nevertheless, they
share a common trait of possessing parabolic layers, i. e. the first-order derivatives in
the direction perpendicular to the layers have magnitude O(1/

√
k). We refer to [1] for

further details about parabolic and exponential layers.
Now we pose the following design problem: Relate s and t such that the parabolic

layers in the solution of the heat equation i. e. Eq.(24) and the solution of the diffusion–reaction
problem i. e. Eq.(26) have the same width.

In the following developments the width of the layer is taken as the distance within
which the value of φ varies from 1% to 99% of [max(f(y)) − min(f(y))]. We choose
f(y) = H(y) to simplify the algebra. For this choice of f(y) the solution of the
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Figure 2: Parabolic layers in the solution of: (a) the heat equation given by Eq.(24)
using k = 0.01 and t = 0.1; (b) the diffusion–reaction problem given by
Eq.(26) using k = 0.01 and s = 10

√
2

heat equation and the diffusion–reaction problem can be expressed as in Eq.(27) and
Eq.(28) respectively.

φ(y, t) =
1

2

[
1+ erf

(
y√
4kt

)]
(27)

φ(y) =
1

2

[
1+ sgn(y)

(
1+ eξ|y|

)]
(28)

Let y = −y∗ be the distance at which the solutions given by Eq.(27) and Eq.(28)
have a value equal to 1% of [max(H(y)) −min(H(y))], i. e. 0.01. Due to the inherent
symmetry of the problem, these solutions at y = y∗ will attain a value equal to 99%
of [max(H(y)) −min(H(y))], i. e. 0.99. Thus we have,

1

2

[
1+ erf

(
−y∗√
4kt

)]
=

1

100
=
e−ξy

∗

2
(29)

Solving Eq.(29) we get the following equation relating s and t,

st =
1

4

[
ln(50)

erf−1(49/50)

]2
≈
√
2 ⇒ s ≈

√
2

t
(30)

The above relation between s and t guarantees that the parabolic layers that appear
in the solutions of the heat equation and the diffusion–production problem will have
the same width. In Figure 3 using Eq.(30) these solutions having the same layer width
are compared.

Remark 3: Using Eq. (30) an alternate linear model for the pseudo-reaction coeffi-
cient could be δ :=

√
2/tn+θ =

√
2/(n+ 1− θ)∆t. Recall that the earlier expression

for δ given in Eq. (10) is nonlinear. The motivation for this nonlinear dependence is to
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Figure 3: Matching the layers in the solution of the heat equation and the diffusion–
reaction problem. (a) plot domain: [−0.2, 0.2], k = 0.01, t = 0.1 and s :=

(
√
2/t) = 10

√
2; (b) plot domain: [−0.2, 0], the two solutions always meet at

a value equal to 0.01

guarantee the independence of the steady-state solution on the used time step. Using
δ :=

√
2/(n+ 1− θ)∆t will make the parameter β independent of the solution even

for the transient case. Further, the steady-state case has to be understood as n� 1 i. e.
tn+θ →∞ and here, as required, δ→ 0. The pros and cons of using this δ instead of
the one given earlier in Eq. (10) will be explored in future works.

We now address the initial objective of quantifying the characteristic layers found
in the singularly perturbed convection–diffusion problem (19). Consider a fictitious
reaction coefficient sc and an associated dimensionless element number ωc defined
as below.

sc :=

√
2u

x
, ωc =

sc`
2

k
(31)

where ` is an appropriate element length measure. We have used the substitution
t = (x/u) in Eq.(30) to arrive at the expression for sc in Eq.(31). Recall that we have
used earlier the same substitution in the solution of the heat equation to recover the
leading term describing the characteristic layers in the solution of the convection–
diffusion problem. We may use this fictitious reaction coefficient sc to relate the
characteristic layers of the convection–diffusion problem to similar2 parabolic layers
of the 1d diffusion–production problem. In this sense, the nondimensional element
number ωc quantifies the characteristic layers and could be used in the design of
stabilization parameters to control the numerical artifacts about these layers.

Note that the value of sc is a function of x, i. e. sc is inversely proportional to
the distance from the source of the discontinuity along the characteristic lines. In
fact this is how the characteristic layers in the solution of the convection–diffusion
problem behave, i. e. their width widens as we move away from the source of the

2 in the sense of matched layer widths
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discontinuity along the characteristic lines. However from the design point-of-view, a
variable definition of sc and hence of ωc is inconvenient. This is due to the fact that
the characteristic lines could be arbitrary curves governed by the velocity field and
hence finding the distance x along these lines need not be straight-forward. Hence
we redefine sc and ωc using an appropriate element characteristic length `c which
effectively models the sharpest characteristic layer close to the inflow boundary.

sc :=

√
2u

`c
, ωc =

sc`
2

k
(32)

6 objective characteristic tensors

In this section we present the objective characteristic tensors h and H used in the
extension of the HRPG method to higher dimensions. In the developments to follow,
only the lowest order block finite elements are considered. Here objectivity is to be
understood as the independence of the method on the description of the reference
frame and admissible node numbering permutations of the mesh.

Consider the following definition for the element length vectors li :

li := 2J · ẽi ; Jij :=
∂xi
∂x̃j

; ẽij := δ
i
j (33)

where J represents the Jacobian matrix of bijective mappings from the local to global
coordinate systems, xi and x̃i represent the global and local coordinates respectively,
ẽi are fixed vectors along the axes of the local frame and δij is the Kronecker delta. Fig-
ure 4 illustrates the element length vectors li obtained at any arbitrary point P(x̃1, x̃2)
within a 2d bilinear block finite element. The expression for the vectors li in 2d and
at this point P can be simplified to the following:

l1 =
1− x̃2
2

E12 +
1+ x̃2
2

E43 ; l2 =
1− x̃1
2

E14 +
1+ x̃1
2

E23 (34)

where Eab is the edge vector pointing from node a to node b.
Let αi,βi be stabilization parameters calculated along the element length vectors

li and with the following properties: a) (u · li)αi > 0 ∀ i, b) βi > 0 ∀ i and c) only
scalars and free vectors3 are used in their respective definitions. The definition of
these parameters is delayed until Section 7. The characteristic tensors h and H are
calculated as: h := 0.5αili , H := 0.5(βi/|li|)[li ⊗ li]. Thus in 2d the characteristic
tensors could be expressed as follows:

h := α1l1 +α2l2 ; H :=
β1

|l1|
[l1 ⊗ l1] +

β2

|l2|
[l2 ⊗ l2] (35)

Using h, H as defined above we calculate the perturbation ph associated with the
HRPG method as described earlier in Eq.(6). The definition of h and H given by
Eq.(35) guarantees the objectivity of the HRPG method. Reference frame indepen-
dence can be verified by the fact that the tensors h and H obey the same tensor
transformation rules as any other free tensor associated with the problem, e. g. the
velocity vector u. Admissible node numbering permutations only swap one element

3 If one is interested only in the magnitude and direction of the vector and does not think of it as situated
at any particular location, then it is called a free vector
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Figure 4: Anisotropic element length vectors li obtained at any arbitrary point
P(x̃1, x̃2) within a 2d bilinear block finite element. The sub-figures (a) and
(b) illustrate li obtained for two admissible global node numbering permu-
tations

length vector with the other (possibly with a change of sign) as shown in Figure 4b.
Due to the properties of αi,βi and by their definition, the characteristic tensors h and
H are invariant with respect to these swaps in li.

Remark 4: Figures similar to Figure 4a were presented earlier in [2] (cf. Fig. 3.2,
pp. 55), [3] (cf. Fig. 3.4, pp. 215) and [53] (cf. Figure 2, pp. 2205). Therein the element
length vectors li evaluated at the centroid of the element were used to define a scalar
element size measure. The distinction here is to use these li to arrive at objective
characteristic tensors h and H that treat effectively the anisotropy of the finite element.

Remark 5: Consider a rectangular domain partitioned by structured bilinear block
finite elements with dimensions `1, `2, respectively. It was observed for the FIC
method that the exponential layers are better resolved choosing hfic = {α1`1,α2`2}
instead of hfic = τu. Making the latter choice we recover the SUPG method and here
one often finds partially resolved global oscillations when the velocity is skewed to the
mesh or using high aspect ratio FEs. Following this line, a more elaborate approach
was presented in [54] within the framework of subgrid scale methods, to define a
scalar expression for the stabilization parameter τ that render the method robust with
respect to the mesh distortion. In the FIC method this robustness is achieved by the
inclusion of additional, albeit simple (a straight-forward extension of their 1d counter-
parts), parameters (here α1 and α2). However special care has to be taken such that
the characteristic length hfic be objective. This is the motivation behind the way the
characteristic tensors h and H are designed in the HRPG method.

7 stabilization parameters

Except for the modification to include the new dimensionless number introduced in
Section 5 that quantifies the characteristic layers, the definition of the stabilization
parameters αi,βi calculated along the element length vectors li are a direct exten-
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sion of their counterparts in 1d summarized in Box 1. Following this line, in multi
dimensions and along li we define the following nondimensional element numbers:

γi :=
u · li
2k

; ωi :=
s|li|2

k
; σi :=

s|li|2

u · li (36)

Following Eq.(32), the fictitious reaction coefficient ŝi and the associated dimension-
less number ω̂i along li are calculated as follows.

ŝi := max
j6=i

√
2
|u · lj|
|lj|2

; ω̂i :=
ŝi|li|2

k
(37)

Following Eq. (13) the stabilization parameters αi along li are calculated as follows.

αi := λi sgn(u · li)max
{[
1−

1

|γi|

]
, 0
}

; λi :=
1

3(1+
√

|σi|)
(38)

Assuming that the discretization in time is done using the implicit trapezoidal rule
and following Eq. (10) we calculate the nonlinear pseudo-reaction coefficient δ as
follows.

δ :=
1

θ∆t

‖ φ̃h −φnh ‖∞
‖ φ̃h ‖∞ (39)

Following Eq. (11) we define the effective convection, diffusion and reaction coeffi-
cients along li as follows.

ũi :=
u · li
|lj|

−
αi|li|s
2

−
α|li|δ
2

; k̃i := k+
αiu · li
2

; s̃ := s+ δ (40)

Likewise following Eq. (12a), the effective element dimensionless numbers along li

can be calculated as,

γ̃i :=
|ũi||li|
2k̃i

; σ̃i :=
s̃|li|
|ũi|

; ω̃i :=
s̃|li|2

k̃i
(41)

Finally, following Eq. (12b) the stabilization parameters βi along li are calculated
using the dimensionless numbers γ̃i, σ̃i, ω̃i and ω̂i as follows:

βi := max
{[
2

3

(
σ̃i + 3

σ̃i + 2

)
−

(
4

ω̃i + 4γ̃i

)]
,
[
2

3
−
4

ω̂i

]
, 0
}

(42)

The inclusion of the term (2/3) − (4/ω̂i) in the definition of βi is the only modifi-
cation from a straight-forward extension to multi dimensions of the definition of its
counterpart in 1d. This expression follows from the reaction-limit value of β given in
Eq. (15) and the justification is based on the strategy we employ to treat the numerical
artifacts about the characteristic layers— to treat them just like the numerical artifacts
about the parabolic layers in the reaction-dominant case.
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residual

R(φn+θh ) :=
φn+θh −φnh

θ∆t
+ u ·∇φn+θh −∇ · (k∇φn+θh ) + sφn+θh − f(x)

hrpg method

∫
Ω

wh
φn+θh −φnh

θ∆t
dΩ+ a(wh,φn+θh ) +

∑
K

∫
K

(h ·∇wh)R(φn+θh ) dΩ

+
∑
K

∫
K

|R(φn+θh )|

|∇φn+θh |
(∇wh ·H ·∇φn+θh ) dΩ = l(wh)

φn+1h =
1

θ
φn+θh −

(1− θ)

θ
φnh

definitions

a(w,φ) :=
∫
Ω

w [u ·∇φ+ sφ] + k∇w ·∇φ dΩ

l(w) :=

∫
Ω

wf(x) dΩ−

∫
ΓN

wgp dΓN

Jij :=
∂xi
∂x̃j

; ẽij := δ
i
j; li := 2J · ẽi

ŝi := max
j6=i

√
2
|u · lj|
|lj|2

; γi :=
u · li
2k

; σi :=
s|li|2

u · li ; ω̂i :=
ŝi|li|2

k

λi :=
1

3(1+
√

|σi|)
; αi := λi sgn(u · li)max

{[
1−

1

|γi|

]
, 0
}

∆t = tn+1 − tn; θ ∈ (0, 1); δ :=
1

θ∆t

‖ φn+θh −φnh ‖∞
‖ φn+θh ‖∞

ũi :=
u · li
|li|

−
αi|li|s
2

−
αi|li|δ
2

; k̃i := k+
αiu · li
2

; s̃ := s+ δ

γ̃i :=
|ũi||li|
2k̃i

; σ̃i :=
s̃|li|
|ũi|

; ω̃i :=
s̃|li|2

k̃i

βi := max
{[
2

3

(
σ̃i + 3

σ̃i + 2

)
−

(
4

ω̃i + 4γ̃i

)]
,
[
2

3
−
4

ω̂i

]
, 0
}

h :=
∑
i

1

2
αili ; H :=

∑
i

1

2

βi

|li|
[li ⊗ li]

Box 2: Summary of the HRPG method in multi dimensions using the lowest order
block finite elements and considering the generalized trapezoidal method for
time integration. In the numerical examples the choice θ = 1/2 is made which
represents the implicit midpoint rule. δij represents the Kronecker delta.
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8 examples

In this section we present some examples in 2d for the CDR problem defined by
Eq.(1). The domain Ω is discretized by considering both structured and unstructured
meshes made up of just the bilinear block finite elements. The unstructured meshes
are obtained by randomly perturbing the interior nodes of structured meshes with
coordinates (xi,yi) as follows [55, 56]:

x
′
i = xi + `1δ

∗rand() ; y
′
i = yi + `2δ

∗rand() (43)

where, (x
′
i,y

′
i) represent the corresponding coordinates of the unstructured mesh,

`1, `2 represent the mesh sizes of the structured mesh, δ∗ is a mesh distortion param-
eter and rand() is a function that returns random numbers uniformly distributed in
the interval [−1, 1]. Figure 5 illustrates two types of unstructured meshes obtained by
this procedure using a 20× 20 square mesh and the parameter δ∗ = 0.2. In Figure 5a,
δ∗ = 0.2 was chosen for all the internal nodes of the mesh. Whereas for the nodes
adjacent to the boundary in the mesh shown in Figure 5b, the perturbation perpen-
dicular to the boundary was set to zero. The unstructured meshes obtained using the
former and later techniques are denoted as ‘Type I’ and ‘Type II’ respectively.

(a) (b)

Figure 5: Unstructured 20 × 20 meshes made of bilinear block finite elements. (a)
Type I: all internal nodes of the mesh are perturbed using δ∗ = 0.2. (b) Type
II: the perturbation perpendicular to the boundary was set to zero for the
boundary-adjacent nodes of the mesh. For the rest of the cases δ∗ = 0.2 was
chosen.

The linearization of the HRPG method summarized in Box 2 was done by the Picard
method. The error in the nonlinear iterations was measured in the following norm:

‖ Φi+1 −Φi ‖e

‖ Φi+1 ‖e
(44)

where, ‖ · ‖e is the standard Euclidean vector norm, Φ represents the FE nodal un-
knowns and i represents the iteration counter. A tolerance of 1e-5 was chosen as the
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termination criteria and a maximum of 20 iterations were allowed for the steady-state
examples. For the transient examples the corresponding choices were 1e-3 (tolerance)
and 5 (maximum iterations), respectively. The nonlinear iterations were initialized by
the solution obtained by the SUPG method.

8.1 Steady-state examples

In this section we illustrate the performance of the HRPG method for the stationary
CDR problem. Unless otherwise specified, in all the examples the following data is
considered. The domain Ω is [0, 1]× [0, 1]. Each example is solved using four meshes,
two of which are structured and the remaining two are unstructured. The struc-
tured meshes consists of 20× 20 (uniform/square) and 40× 20 (rectangular) bilinear
elements respectively. The unstructured meshes are obtained from the considered
uniform mesh via the two perturbation techniques described earlier and illustrated
in Figure 5. The obtained solutions are illustrated as surface plots whose view is de-
scribed as (θ◦,ψ◦), where θ◦ is the azimuthal angle with respect to the negative y-axis
and ψ◦ is the elevation angle from the x–y plane.

Example 1: This is a classical steady-state problem introduced in [3] where the
advection is skew to the mesh with downwind essential boundary conditions. The
problem data is: u = (5,−9), k = 10−8, s = 0 and f = 0. The boundary conditions
are: φ = 1 on (x = 0,y > 0.7) ∪ (x < 1,y = 1), φ = 0.5 at (x = 0,y = 0.7) and
φ = 0 on the rest of the boundary. This problem has exponential boundary layers
at the outflow boundary and an internal characteristic layer. Figure 6 illustrates the
solutions obtained by the HRPG method viewed at (20◦, 20◦).

Example 2: This problem was studied in [41] wherein a nonuniform rotational veloc-
ity field is employed in a rectangular domain Ω := [−1, 1]× [0, 1]. Structured meshes
of 40× 20 (uniform/square) and 80× 20 (rectangular) bilinear elements are used. The
unstructured meshes are obtained from the uniform mesh via the two perturbation
techniques described earlier. The problem data is: u = 104(y[1 − x2],−x[1 − y2]),
k = 10−4, f = 0, s = 0. The boundary conditions are: φ = 1 on (x < −0.5,y = 0),
φ = 0.5 at (x = −0.5,y = 0), φ = 0 on (−0.5 < x 6 0,y = 0) ∪ (x = 1,y) and on the
rest of the boundary the Neumann condition n · ∇φ = 0 is imposed. The numerical
solution of the HRPG method viewed at (20◦, 20◦) is shown in Figure 7.

Example 3: This is a uniform advection problem with a constant source term in-
troduced in [57]. The problem data is: u = (1, 0), k = 10−8, f = 1, s = 0. The
homogeneous boundary condition φ = 0 is imposed everywhere. The exact solu-
tion develops exponential layers at the outlet boundary (x = 1,y) and characteristic
boundary layers at (x,y = 0) and (x,y = 1). The numerical solution of the HRPG
method viewed at (−45◦, 20◦) is shown in Figure 8.

Example 4: This is a non-uniform advection problem with a constant source term in-
troduced in [58]. The advection is caused by a unit angular velocity field. Structured
meshes of 64× 64 (uniform/square) and 128× 64 (rectangular) bilinear elements are
used. The unstructured meshes are obtained from the uniform mesh via the two per-
turbation techniques described earlier. The problem data is: u = (y,−x), k = 10−6,
f = 1, s = 0. The homogeneous boundary condition φ = 0 is imposed everywhere.
This problem has a complicated boundary layer. For instance close to the boundary
(x,y = 0) and with an increase in x, these layers gradually vary from being parabolic
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(a) (b)

(c) (d)

Figure 6: Example 1, advection skew to the mesh. The solution of the HRPG method
viewed at (20◦, 20◦) and using (a) a structured 20× 20 mesh, (b) a structured
40× 20 mesh, (c) an unstructured (Type I) 20× 20 mesh, (d) an unstructured
(Type II) 20× 20 mesh.

to exponential while maintaining a constant profile height φ(x,y = 0) ≈ (π/2) (away
from the corners). Close to the boundary (x = 1,y) the solution profile is approxi-
mately φ(x = 1,y) ≈ (π/2)− 2 tan−1(y). The numerical solution of the HRPG method
viewed at (−200◦, 20◦) is shown in Figure 9.

Example 5: This is a uniform advection problem with a discontinuous source term
introduced in [16]. The problem data is: u = (1, 0), k = 10−8, f(x 6 0.5,y) = 1,
f(x > 0.5,y) = −1, s = 0. The homogeneous boundary condition φ = 0 is imposed
everywhere. Structured meshes of 30× 30 (uniform/square) and 60× 30 (rectangular)
bilinear elements are used. The unstructured meshes are obtained from the uniform
mesh via the two perturbation techniques described earlier. The numerical solution
of the HRPG method viewed at (−10◦, 20◦) is shown in Figure 10.

Example 6: This is a plain diffusion–reaction problem. The problem data is: u =

(0, 0), k = 10−8, f = 1, s = 1. The homogeneous boundary condition φ = 0 is imposed
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(a) (b)

(c) (d)

Figure 7: Example 2, nonuniform rotational advection. The solution of the HRPG
method viewed at (20◦, 20◦) and using (a) a structured 40× 20 mesh, (b) a
structured 80× 20 mesh, (c) an unstructured (Type I) 40× 20 mesh, (d) an
unstructured (Type II) 40× 20 mesh.

everywhere. The numerical solution of the HRPG method viewed at (−45◦, 20◦) is
shown in Figure 11.

Example 7: This is a multidimensional modification of the CDR problem studied
earlier in [41, 48]. The problem data is: u = (0.01, 0), k = 10−4, s = 4.8 and f = 0.
The boundary conditions are: φ = 1.0 on (x = 0,y) ∪ (x,y = 0), φ = (3/8) on the
rest of the boundary. The value of the element dimensionless numbers γ1, ω1 are 2.5
and 120 respectively. Recall that for similar problem data in 1d (cf. [48, Section 5.7.1])
the upwind numerical artifacts in the solution of Galerkin method were found to be
enhanced in the solution of the SUPG method. The numerical solution of the HRPG
method viewed at (120◦, 20◦) is shown in Figure 12.

For the considered steady-state examples Table 2 lists the maximum and minimum
values of the obtained HRPG solutions and provides a comparison of the same with
the corresponding values of the exact solutions. The number of nonlinear iterations
required for convergence using a tolerance of 1e-2, 1e-3 and 1e-4 are also shown
side by side. Just three iterations are sufficient for most of the examples should the
tolerance be chosen as 1e-2.
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Example max(φh)[max(φ)] min(φh)[min(φ)] Iterations

1e-2 1e-3 1e-4

1, Figure 6a 1.0029 [1.0] -3.4857e-005 [0.0] 3 6 10

1, Figure 6b 1.005 [1.0] -3.5839e-007 [0.0] 3 6 9

1, Figure 6c 1.0499 [1.0] -1.9485e-006 [0.0] 3 6 9

1, Figure 6d 1.0166 [1.0] -2.8334e-005 [0.0] 3 5 9

2, Figure 7a 1.0034 [1.0] -0.004592 [0.0] 3 7 13

2, Figure 7b 1.0041 [1.0] -0.0024418 [0.0] 3 7 13

2, Figure 7c 1.0303 [1.0] -0.0060189 [0.0] 3 7 11

2, Figure 7d 1.0524 [1.0] -0.012783 [0.0] 3 8 14

3, Figure 8a 0.95031 [0.95] 0.0 [0.0] 3 5 9

3, Figure 8b 0.97665 [0.975] 0.0 [0.0] 3 5 8

3, Figure 8c 1.1076 [<1.0] 0.0[0.0] 3 7 14

3, Figure 8d 0.96857 [0.95] 0.0 [0.0] 3 6 16

4, Figure 9a 1.5517 [<1.5708] 0.0 [0.0] 1 5 >20

4, Figure 9b 1.5529 [<1.5708] 0.0 [0.0] 1 5 >20

4, Figure 9c 1.8138 [<1.5708] 0.0 [0.0] 5 9 >20

4, Figure 9d 1.6191 [<1.5708] 0.0 [0.0] 4 8 >20

5, Figure 10a 0.5 [0.5] -0.068137 [0.0] 3 7 13

5, Figure 10b 0.50002 [0.5] -0.10108 [0.0] 3 7 12

5, Figure 10c 0.50182 [0.5] -0.12577 [0.0] 3 7 18

5, Figure 10d 0.50689 [0.5] -0.057931 [0.0] 3 7 13

6, Figure 11a 1.0053 [1.0] 0.0 [0.0] 3 7 10

6, Figure 11b 1.0096 [1.0] 0.0 [0.0] 3 6 9

6, Figure 11c 1.03 [1.0] 0.0 [0.0] 3 7 10

6, Figure 11d 1.0148 [1.0] 0.0 [0.0] 3 7 10

7, Figure 12a 1.0 [1.0] -0.0041651 [0.0] 4 7 10

7, Figure 12b 1.0 [1.0] -0.0030349 [0.0] 4 6 9

7, Figure 12c 1.0 [1.0] -0.02101 [0.0] 4 7 10

7, Figure 12d 1.0 [1.0] -0.0080537 [0.0] 4 7 10

Table 2: A comparison of the maximum and minimum values of the HRPG and the
exact (shown in square brackets) solutions in the examples presented in Sec-
tion 8.1. The number of nonlinear iterations required for convergence using
a tolerance of 1e-2, 1e-3 and 1e-4 are also shown side by side.
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(a) (b)

(c) (d)

Figure 8: Example 3, uniform advection with a constant source term. The solution of
the HRPG method viewed at (−45◦, 20◦) and using (a) a structured 20× 20
mesh, (b) a structured 40× 20 mesh, (c) an unstructured (Type I) 20× 20
mesh, (d) an unstructured (Type II) 20× 20 mesh.

8.2 Transient examples

Here we illustrate the performance of the HRPG method for the transient 2d pure
convection problem. Only uniform bilinear finite elements are used here. Both of
the examples presented here deal with the advection of solid bodies modeled with
appropriate density functions. These problems are frequently used as test cases for
advection algorithms demonstrating their treatment of dispersive oscillations and the
overall solution accuracy.

Example 8: This is a test case introduced in the ERCOFTAC document [59]. A
circular scalar bubble is initially positioned at the bottom of a square domain in a fixed
constant velocity field directed at 45◦ toward the top right of the domain. The problem
data is: u = (0.5, 0.5), k = 10−30, s = 0 and f = 0. The domain Ω := [0, 3]× [0, 3] is
discretized by a uniform mesh of 300× 300 bilinear elements. The time integration
is done using the implicit midpoint rule (θ = 1/2) and is advanced at a time step of
0.005 seconds. This corresponds to an element CFL number of 0.25. Define a radius
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(a) (b)

(c) (d)

Figure 9: Example 4, non-uniform advection with a constant source term. The solu-
tion of the HRPG method viewed at (−200◦, 20◦) and using (a) a structured
64× 64 mesh, (b) a structured 128× 64 mesh, (c) an unstructured (Type I)
64× 64 mesh, (d) an unstructured (Type II) 64× 64 mesh.

R = 0.25, an arbitrary position vector r := (x,y) ∈ Ω and a specific position vector
rc := (0.5, 0.5) ∈ Ω. The initial solution can then be expressed as follows:

φ(r, t = 0) = H(R− |r − rc|) (45)

where H() is the Heaviside function defined earlier in Eq.(20b) and rc is the cen-
ter of the circular scalar bubble. The initial solution viewed at (40◦, 20◦) is shown
in Figure 13a (elevation plot) and Figure 13c (contour plot). The Dirichlet boundary
condition φ = 0 is imposed at the inlet boundaries. The numerical solution of the
HRPG method at time t ∈ {1, 2, 3, 4} seconds and viewed at (40◦, 20◦) is shown in
Figure 14 (elevation plots) and Figure 15 (contour plots). The maximum values of the
HRPG solution at the considered instances are 1.0, 1.0, 0.99999 and 0.99996, respec-
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(a) (b)

(c) (d)

Figure 10: Example 5, uniform advection with a discontinuous source term. The solu-
tion of the HRPG method viewed at (−10◦, 20◦) and using (a) a structured
30× 30 mesh, (b) a structured 60× 30 mesh, (c) an unstructured (Type I)
30× 30 mesh, (d) an unstructured (Type II) 30× 30 mesh.

tively. Likewise at these instances the minimum values are −9.7579e− 8,−2.8204e−
14,−1.7445e− 20 and −5.1675e− 23, respectively.

Example 9: This is a standard benchmark problem introduced in [60] that simulates
the advection of a solid body subjected to a constant angular velocity field. The
solid body is modeled with a scalar density function that has three shapes, viz. a
slotted cylinder, a cone and a sinusoidal hump. The classical problem with just the
slotted cylinder revolving about the center of the domain was proposed by Zalesak
in the seminal paper [61] that extended the FCT method to multi dimensions. The
problem data is: u = (0.5 − y, x − 0.5), k = 10−30, s = 0 and f = 0. The domain
Ω := [0, 1]× [0, 1] is discretized using 200× 200 uniform bilinear elements. The time
integration is done using the implicit midpoint rule (θ = 1/2) and is advanced at a
time step of 0.001 seconds. This corresponds to a maximum element CFL number of
0.1. Define a radius R = 0.15, an arbitrary position vector r := (x,y) ∈ Ω and a specific
position vector ra := (xa,ya) ∈ Ω for some chosen point a. The initial solution can
then be expressed as follows:

φ(r, t = 0) = H(R− |r − r1|)
[
1− H(0.025− |x− x1|)H(0.85− y)

]
+

1− min
{
|r − r2|
R

, 1
}
+
1

4

[
1+ cos

(
πmin

{
|r − r2|
R

, 1
})] (46)

where H() is the Heaviside function defined earlier in Eq.(20b), r1 = (0.5, 0.75),
r2 = (0.5, 0.25) and r3 = (0.25, 0.5) are the position vectors corresponding to the
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(a) (b)

(c) (d)

Figure 11: Example 6, a reaction–diffusion problem The solution of the HRPG method
viewed at (−45◦, 20◦) and using (a) a structured 20× 20 mesh, (b) a struc-
tured 40× 20 mesh, (c) an unstructured (Type I) 20× 20 mesh, (d) an un-
structured (Type II) 20× 20 mesh.

center of the slotted cylinder, the cone and the sinusoidal hump respectively. The
initial solution viewed at (−20◦, 20◦) is shown in Figure 13b (elevation plot) and Fig-
ure 13d (contour plot). The Dirichlet boundary condition φ = 0 is imposed at the
inlet boundaries. Under the considered velocity field the initial solution completes a
full revolution in 2π seconds. The numerical solution of the HRPG method at time
t = {(π/2),π, (3π/2), 2π} seconds and viewed at (−20◦, 20◦) is shown in Figure 16 (ele-
vation plots) and Figure 17 (contour plots). For the considered instances in time, three
different cross sections of the HRPG solution are shown in Figure 18. With respect
to Figure 13d, ‘cut 1’ represents the cross section made along the plane given by the
equation x = 0.5. Likewise, ‘cut 2’ and ‘cut 3’ represent the cross sections given by
y = 0.5 and y = 0.75. Details such as the accuracy with respect to the exact solu-
tion, the control of dispersive oscillations and the smearing of the edges in the initial
solution profile can be appreciated better in these cross section plots.
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(a) (b)

(c) (d)

Figure 12: Example 7, a CDR problem with a dominant reaction term. The solution of
the HRPG method viewed at (120◦, 20◦) and using (a) a structured 20× 20
mesh, (b) a structured 40× 20 mesh, (c) an unstructured (Type I) 20× 20
mesh, (d) an unstructured (Type II) 20× 20 mesh.

8.3 Discussion

The HRPG method proposed here can be understood as the combination of upwind-
ing plus a discontinuity-capturing operator. Also the discontinuity-capturing term
has the canonical form of the shock-capturing diffusion, i. e. it is proportional to
(|R(φh)|/|∇φh|). Nevertheless the finer structure of the HRPG method is distinct
from the existing shock-capturing Petrov–Galerkin methods in the literature (cf. Ta-
ble 1). The distinction is that the upwinding provided by the characteristic tensor h is
not streamline and the discontinuity capturing provided by the characteristic tensor
H is neither isotropic nor purely crosswind.

It is clearly seen from the steady-state examples presented in the previous section
that for structured meshes (both square and rectangular bilinear elements) the HRPG
method reproduces a crisp resolution of the layers in the numerical solution. The good
performance on rectangular elements (here considered with an aspect ratio of 2:1) is
due to the anisotropic treatment of the stabilization terms involving the characteristic
tensors h and H. The solutions obtained by the HRPG method for the transient
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(a) (b)

(c) (d)

Figure 13: Initial data for the transient 2d advection examples. (a) Example 8, ele-
vation plot viewed at (40◦, 20◦), (b) Example 9, elevation plot viewed at
(−20◦, 20◦), (c) Example 8, contour plot, (d) Example 9, contour plot.

2d advection examples advocate its good treatment of dispersive oscillations without
compromising the solution-accuracy (cf. Figures 14 and 16). Also the symmetry of the
initial data is well maintained (cf. Figures 15 and 17). Recall that the time integration
was performed by the implicit midpoint rule which is a symplectic time integrator
[62]. This choice was made to single-out the treatment of the geometrical symmetry
in the initial data by the HRPG method.

Clearly on unstructured meshes we do not attain the same layer resolution quality
as is obtained on the corresponding structured meshes. However the parabolic layers
(characteristic and reactive layers) are captured satisfactorily. About the exponen-
tial layers some overshoots and undershoots are observed using Type I unstructured
meshes. These unwanted localized artifacts are conspicuous in the solutions of exam-
ple 3 (Figure 8c) and example 4 (Figure 9c) suggesting that there is room for further
improvement of the method. Nevertheless using Type II unstructured meshes where
in the random perturbation of the mesh nodes perpendicular to the domain bound-
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(a) (b)

(c) (d)

Figure 14: Example 8, transient pure convection skew to the mesh. The solution of
the HRPG method viewed at (40◦, 20◦) and at time (a) t = 1 s, (b) t = 2 s,
(c) t = 3 s, (d) t = 4 s.

ary is set to zero, these unwanted artifacts about the exponential layers are greatly
reduced.

Figure 10 illustrates another shortcoming of the HRPG method that is conspicuous
even when structured meshes are used. On one half of the domain (here the source
term is positive) the obtained solutions have crisp layer resolutions, whereas in the
remaining half (here the source term is negative) the numerical solution appears to
be over-damped and even negative near the corners of the outlet boundary. This
is a shortcoming suffered by all the shock-capturing techniques designed within the
Petrov–Galekin framework (see Codina’s monograph [63]) that rely on the canoni-
cal strategy of adding a positive shock-capturing diffusion. The following example
illustrates why the aforesaid strategy fails to address this shortcoming.

Example 10: Consider a unit domain Ω := [0, 1]× [0, 1] and the following problem
data: u = (1, 0), k = 10−8, s = 0 and f = −1. The Dirichlet boundary conditions
are: φ = 1 on (x = 0,y > 0) ∪ (x,y = 1) and φ = 0 on the rest of the boundary.
The domain Ω is discretized using a structured mesh of 20 × 20 (uniform/square)
bilinear elements. In the interior of the domain the exact solution has the profile of
a flat surface with a slope of −1. Along the boundaries (x,y = 0) and (x,y = 1) the
exact solution develops characteristic boundary layers and as a consequence within
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(a) (b)

(c) (d)

Figure 15: Example 8, transient pure convection skew to the mesh. The contour plots
of the solution of the HRPG method at time (a) t = 1 s, (b) t = 2 s, (c) t = 3
s, (d) t = 4 s.

the width of these characteristic layers and near the corners of the outlet boundary
(x = 1,y), exponential layers are formed. Hence the solution of the plain Galekin
FEM will be corrupted with global oscillations. The solutions obtained by the SUPG
and the HRPG method are shown in Figure 19.

Note that the undershoots and overshoots in the solution of the SUPG method are
identical across both characteristic layers (cf. Figures 19a and 19c). This is in agree-
ment with the reasoning made in Section 4 related to the numerical artifacts across
characteristic layers, i. e. unlike in the reaction-dominant case where it is the numer-
ical solution that undergoes the 1d mass type averaging, in the convection-dominant
case it is the derivatives of the numerical solution that undergo the same. Thus, the
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(a) (b)

(c) (d)

Figure 16: Example 9, rotation of solid bodies. The solution of the HRPG method
viewed at (−20◦, 20◦) and at time (a) t = (π/2) s i. e. after a quarter-
revolution, (b) t = π s i. e. after a half-revolution, (c) t = (3π/2) s, i. e.
after three quarters of a revolution (d) t = 2π s i. e. after a full-revolution.

Gibbs phenomenon across the characteristic layers in the later case is proportional to
the variations in the derivatives of the solution across these layers. In other words for
the current problem it is the slope of φh and not the actual value of φh on the bound-
ary that determines the observed artifacts. It can be clearly seen in Figure 19c that
any method, that relies on the canonical strategy of adding a positive shock-capturing
diffusion, will not be able to recover (near the boundary (x,y = 0)) the nodally exact
interpolant from the initial SUPG solution. On the other hand, note that the artifacts
near the boundary (x,y = 1) have a profile similar to the one that would have been
observed for the L2 projection of the exact solution onto the finite element space. It is
for this reason that the aforesaid strategy succeeds in capturing these layers.

Obviously tailor-made solutions exist to treat this shortcoming. For instance, one
such trick that recovers crisp resolution of these layers for the HRPG method and for
the current problem (example 10) is to reverse the sign of the stabilization parameter
β (along the y-axis) for all elements containing the boundary section (x,y = 0), thus
enforcing a negative shock-capturing diffusion for these elements. Unfortunately it is
difficult to generalize these tailor-made tricks to an arbitrary situation. An alternative
would be to change the strategy to the one which directly treats the cause of the Gibbs
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(a) (b)

(c) (d)

Figure 17: Example 9, rotation of solid bodies. The contour plots of the solution of
the HRPG method at time (a) t = (π/2) s i. e. after a quarter-revolution, (b)
t = π s i. e. after a half-revolution, (c) t = (3π/2) s, i. e. after three quarters
of a revolution, (d) t = 2π s i. e. after a full-revolution.

phenomenon for both the reactive and characteristic layers4—Design the weights of
a Petrov–Galerkin FEM such that the typical 1d mass type averaging in the Galerkin
FEM (cf. Eq.(18)) be lumped in the regions across the layers. Research in this line is
still under development and we delay its introduction to future works.

Remark 6: Fortunately, this idea which was born to treat this shortcoming in the
CDR problem, has opened door to a class of higher-order compact Petrov–Galerkin
FEM effective for the Helmholtz problem. The design of such a Petrov–Galerkin FEM
and its applications to the Helmholtz equation is the subject matter of the paper [64].

4 this idea is a fruit of the discussions with Prof. Ramon Codina
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Figure 18: Example 9, rotation of solid bodies. Three different cross sections (cut 1,
cut 2 and cut 3) of the HRPG solution are shown at time (a) t = (π/2) s
i. e. after a quarter-revolution, (b) t = π s i. e. after a half-revolution, (c)
t = (3π/2) s, i. e. after three quarters of a revolution, (d) t = 2π s i. e. after
a full-revolution. The solid lines without markers are the true solution

8.4 Comparison with other methods

Here we make a comparison of the solutions obtained using the HRPG method with
those obtained using the ASGS [54], SGS-GSGS [40] and CAU [18] methods. To be
precise, we compare three steady state examples, viz. examples 1, 3, and 7. These
examples are solved on structured meshes only and are illustrated in Figures 20-22,
respectively.

Note that the ASGS and SGS-GSGS methods are linear methods proposed for the
CDR problem. The ASGS method is a single-parameter method wherein this scalar
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Figure 19: Example 10, uniform advection with a negative source term. The solution
obtained on a uniform 20× 20 mesh viewed at (45◦, 0◦) and using (a) the
SUPG method, (b) the HRPG method. (c) Comparison of the nodally exact
interpolant at three different cross sections with the numerical solution
obtained by the SUPG and the HRPG method.

stabilization parameter was designed to attain a robust method (with respect to global
stability) even on anisotropic meshes. In the advective limit the SGS-GSGS method
recovers the SGS method [11]. Thus, in this case the solutions of the ASGS and SGS-
GSGS methods will be similar. As shock-capturing is not a design objective, these
methods will yield local instabilities in the presence of sharp layers (cf. Figures 20a-
20d, 21a-21d, 22a- 22d).

When high element advection (large γ) is combined with strong element reaction
(large ω), the local instabilities that appear in the Galerkin method are occasionally
enhanced in several linear single-parameter stabilized methods [39–41, 48]. The SGS-
GSGS method is a two-parameter method designed to treat these local instabilities in
the presence of strong element reaction. This improvement over the ASGS method
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(cf. Figure 22a) can be seen in Figure 22c. As the maximum element size is used
to calculate the stabilization parameters in the SGS-GSGS method, we get a smeared
solution on a rectangular mesh (cf. Figure 21d and 22d).

On the other hand, shock-capturing is a design objective for the CAU method which
is nonlinear. Figures 20e, 20f, 21e and 21f illustrate that the local instabilities found
in the ASGS and SGS-GSGS methods are greatly controlled by the CAU method in
examples 1 and 3. Recall that, unlike some other shock-capturing methods (e. g. [17,
21]), the CAU method retains the shock-capturing terms even in 1d and in several
limit cases of the CDR problem [48]. However, the expressions of the stabilization
parameters were never optimized for these limit cases. Thus, there are instances
when the CAU method is either over-diffusive (cf. Figures 21e and 21f) or fails to
improve upon the initial solution obtained by the SUPG method (cf. Figures 22e, 22f).
Such lack of improvement upon the initial SUPG solution has been observed even in
1d [48]. The improvement in the accuracy and layer resolution obtained by the HRPG
method for the considered examples are evident in Figures 6a, 6b, 8a, 8b, 12a and
12b. However, for the considered examples, the HRPG method needed one or two
iterations more than the CAU method.

9 conclusions

We have developed a multi dimensional extension of the HRPG method presented
earlier in [48] for the 1d CDR problem. As the characteristic internal/boundary layers
found in the convection-dominant case are a unique feature of the solution in higher
dimensions, they do not have any counterparts in 1d. Hence, a straight-forward
extension of the stabilization parameters of the HRPG method derived for the 1d case
will not be efficient to resolve these parabolic layers.

The numerical artifacts that are formed across the parabolic layers are usually man-
ifested as the Gibbs phenomenon. The strategy we employ to treat the artifacts about
the characteristic layers is to treat them just like the artifacts found across the parabolic
layers in the reaction-dominant case. This is done by relating the characteristic lay-
ers in the convection–diffusion problem to the parabolic layers formed in a fictitious
diffusion–reaction problem. The fictitious reaction coefficient in the later problem is
designed such that the parabolic layers in both the problems have the same width. Us-
ing this fictitious reaction coefficient, we present a nondimensional element number
that quantifies these characteristic layers. By quantification we mean that it should
serve a similar purpose in the definition of the stabilization parameters as the element
Peclet number does for the exponential layers.

Although the structure of HRPG method in 1d is identical to the consistent approx-
imate upwind Petrov–Galerkin method [18], in multi dimensions the former method
has a unique structure. The distinction is that in general the upwinding is not stream-
line and the discontinuity-capturing is neither isotropic nor purely crosswind. In
this line, we present anisotropic element length vectors li and using them objective
characteristic tensors associated with the HRPG method are defined. Only the multi-
linear block finite elements are considered in this study. Except for the modification
to include the new dimensionless number that quantifies the characteristic layers, the
definition of the stabilization parameters αi,βi calculated along the element length
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(a) ASGS, 20× 20 mesh (b) ASGS, 40× 20 mesh

(c) SGS-GSGS, 20× 20 mesh (d) SGS-GSGS, 40× 20 mesh

(e) CAU, 20× 20 mesh (f) CAU, 40× 20 mesh

Figure 20: Solutions to Example 1 using the ASGS [54], SGS-GSGS [40] and CAU [18]
methods viewed at (20◦, 20◦).

vectors li are a direct extension of their counterparts in 1d summarized earlier in [48,
Section 5.6].

Finally, several steady-state and transient examples are presented that throw light
on the good performance of the proposed method.
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(a) ASGS, 20× 20 mesh (b) ASGS, 40× 20 mesh

(c) SGS-GSGS, 20× 20 mesh (d) SGS-GSGS, 40× 20 mesh

(e) CAU, 20× 20 mesh (f) CAU, 40× 20 mesh

Figure 21: Solutions to Example 3 using the ASGS [54], SGS-GSGS [40] and CAU [18]
methods viewed at (−45◦, 20◦).

An extension of the HRPG formulation within the finite calculus (FIC) framework
to the study of convection–diffusion–absorption problems using linear triangles can
be found in [65].
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(a) ASGS, 20× 20 mesh (b) ASGS, 40× 20 mesh

(c) SGS-GSGS, 20× 20 mesh (d) SGS-GSGS, 40× 20 mesh

(e) CAU, 20× 20 mesh (f) CAU, 40× 20 mesh

Figure 22: Solutions to Example 7 using the ASGS [54], SGS-GSGS [40] and CAU [18]
methods viewed at (120◦, 20◦).
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[6] R. Löhner, K. Morgan, O. C. Zienkiewicz, The solution of non-linear hyperbolic
equation systems by the finite element method, International Journal for Numer-
ical Methods in Fluids 4 (11) (1984) 1043–1063. doi:10.1002/fld.1650041105.
URL http://doi.wiley.com/10.1002/fld.1650041105

[7] T. J. R. Hughes, L. P. Franca, G. M. Hulbert, A new finite element formulation
for computational fluid dynamics: VIII. The Galerkin/least-squares method for
advective–diffusive equations, Computer Methods in Applied Mechanics and
Engineering 73 (1989) 173–189. doi:10.1016/0045-7825(89)90111-4.

[8] F. Brezzi, M.-O. Bristeau, L. P. Franca, M. Mallet, G. Rogé, A relationship between
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