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Abstract

We present a 3-noded triangle and a 4-noded tetrahedra with a continuous linear velocity and a
discontinuous linear pressure field formed by the sum of an unknown constant pressure field and
a prescribed linear field that satisfies the steady state momentum equations for a constant body
force. The elements are termed P1/P0+ as the “effective” pressure field is linear, although the
unknown pressure field is piecewise constant within each element. The elements have an excel-
lent behaviour for incompressible viscous flow problems with discontinuous material properties
formulated in either Eulerian or Lagrangian descriptions. The necessary numerical stabilization
for dealing with the inf-sup condition imposed by the incompressibility constraint and high con-
vective effects (in Eulerian flows) is introduced via the Finite Calculus (FIC) approach. For the
sake of clarity, the element derivation is presented first for the simpler Stokes equations written
in the standard Eulerian frame. The extension of the formulation to the Navier-Stokes equations
written in the Eulerian and Lagrangian frameworks is straightforward and is presented in the
second part of the paper.
The efficiency and accuracy of the new P1/P0+ triangle is verified by solving a set of incompress-
ible multifluid flow problems using a Lagrangian approach and a classical Eulerian description.
The excellent performance of the new triangular element in terms of mass conservation and
general accuracy for analysis of fluids with discontinuous material properties is highlighted.

Keywords: P1/P0+ elements, Incompressible flow, Discontinuous material properties,
Multifluids

1. INTRODUCTION

Preservation of mass is a great challenge in the numerical study of incompressible flow
problems. Mass losses can be introduced by the so-called stabilization terms which are typically
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added to the discretized forms of the momentum and mass balance equations in order to account
for large values of the convective acceleration terms in the momentum equations in high Reynolds
number flows and to satisfy the inf-sup condition imposed by the incompressibility constraint
when equal order interpolation of the velocities and the pressure are used in mixed finite element
methods [4, 11, 39].

Mass loss also typically occurs in the numerical study of free-surface incompressible flow
problems using Eulerian and Lagrangian descriptions. In both cases, the inaccuracy in capturing
the free surface can lead to considerable mass losses unless special numerical schemes are used
[22].

An additional source of mass loss occurs in the numerical analysis of the so-called multifluid
problems with discontinuous changes in the viscosity and/or the density in parts of the domain.
Most numerical methods have difficulties for accurately capturing the jumps in the pressure
and/or the pressure gradient at the interfaces between the different fluids [20, 21, 25].

The numerical study of multifluids via the FEM and similar computational techniques has
been the subject of much research in last decades. Several authors have proposed alternative
stabilized FEM procedures for accounting for the discontinuity in the pressure (and/or the pres-
sure gradient) at the interface of fluids with different viscosity (and/or pressure). Among these
formulations we note those based in injecting a discontinuous pressure field within the appro-
priate elements [2] and those based on using a stabilized formulation based on the introduction
of stabilization terms including the jumps in the pressure and the viscous terms at the element
boundaries [3, 5, 6, 7, 9, 12, 14, 17, 23].

In this work we present a new 3-noded triangle (and the 4-noded tetrahedron counterpart)
with a continuous linear velocity and a discontinuous linear pressure field formed by the sum
of an unknown constant pressure field and a prescribed linear field that satisfies the steady
state momentum equations for a constant body force. The so-called P1/P0+ elements have
an excellent behaviour for incompressible viscous flow problems formulated in Eulerian and
Lagrangian descriptions. For the sake of clarity, the elements derivation is presented first for
the simpler Stokes equations written in the standard Eulerian frame. The extension of the
formulation to the Navier-Stokes equations written in the Eulerian and Lagrangian frameworks
is straightforward and is presented in the second part of the paper. A motivation of this work is
the study of multifluids problems using a Lagrangian formulation via the Particle Finite Element
Method (PFEM) [10],[18]–[21],[25, 32],[36]–[38] and similar procedures.

The success of the P1/P0+ formulation lays in the consistent derivation of a residual-based
expression of the mass balance equation using the Finite Calculus (FIC) technique. The FIC
approach in mechanics is based on expressing the equations of balance of mass and momentum in
a domain of finite size and retaining higher order terms in the Taylor series expansion typically
used for expressing the change in the transported variables within the balance domain. In
addition to the standard terms of infinitesimal theory, the FIC forms of the balance equations
contain derivatives of the classical differential equations in mechanics multiplied by characteristic
distances in space and time. Examples of stabilized FIC-FEM formulations in fluid and solid
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mechanics can be found in [26]–[31],[33]–[35]. In our work we use the FIC forms of the mass
balance equation in space and time for obtaining a variational residual form useful for finite
element analysis.

The discretized stabilized variational form for the mass balance equation using a P1/P0+
approximation for the velocity/pressure variables involves the jumps in the viscous stresses, the
pressure, the surface tractions and the acceleration term in the normal direction to each side
(or face) of the elements. These stabilization terms resemble those proposed by other authors
for similar fluid flow problems [3, 9, 12, 14, 17, 23]. The method presented in this paper yields
a consistent and extended form of the stabilization terms that has proven to give a superior
behaviour in terms of mass conservation and overall stability in multifluids problems.

The lay-out of the paper is the following. In the next section we present the basic equations
for an incompressible Stokes fluid. Next we derive the stabilized variational FIC form of the
mass balance equation. Then the P1/P0+ finite element discretization for the 3-noded triangle
and the 4-noded tetrahedron is presented and the key matrices and vectors of the discretized
system of equations are given. Details of the solution of the FEM equations are given.

The extension of the general stabilized FIC-FEM formulation to Navier-Stokes flows using
a standard Eulerian approach and a Lagrangian description is outlined.

The efficiency and accuracy of the new P1/P0+ triangle is verified by solving a set of transient
incompressible multifluid flow problems using a Lagrangian approach and a steady state problem
via a classical Eulerian description. The excellent performance of the P1/P0+ triangle in terms
of mass conservation and general accuracy for fluid flow problems with discontinuous material
properties is highlighted.

2. BASIC EQUATIONS

We write the governing equations for an incompressible Stokes flow problem as follows.

Momentum equations

rmi := ρ
∂vi
∂t
− ∂σij
∂xj

− bi = 0 , i, j = 1, ns in Ω (1)

In Eq.(1), vi and bi are the velocity and body force components along the ith Cartesian axis,
ns is the number of space dimension (i.e. ns = 3 for a 3D problem), Ω is the analysis domain
and σij are the Cauchy stresses that are split in the deviatoric (sij) and pressure (p) components
as

σij = sij + pδij (2)

where δij is the Kronecker delta. Note that the pressure is assumed to be positive for a tension
state.

Summation of terms with repeated indices is assumed in Eq.(1) and in the following, unless
otherwise specified.
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Constitutive equation and volumetric strain rates

The relationship between the deviatoric stresses and the strain rates has the standard form
for a Newtonian fluid,

sij = 2µ

(
εij −

1

3
εvδij

)
(3)

where the strain rates εij are related to the velocities by

εij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(4)

In Eq.(4) εv is the volumetric strain rate defined as

εv = εii (5)

Substituting Eqs.(2) and (4) into (1) gives a useful form of the momentum equations as

ρ
∂vi
∂t
− ∂

∂xj
(2µεij) +

∂

∂xi

(
2

3
µεv

)
− ∂p

∂xi
− bi = 0 , i, j = 1, ns (6)

Boundary conditions

The boundary conditions at the Dirichlet (Γv) and Neumann/traction (Γt) boundaries are

vi − vpi = 0 on Γv (7a)

σijnj − tpi = 0 on Γt (7b)

where vpi and tpi , i = 1, ns are the prescribed velocities and prescribed tractions on the Γv and
Γt boundaries, respectively.

Mass balance equation

The mass balance equation for an incompressible fluid is written as

εv = 0 in Ω (8)

Stabilized FEM techniques are needed for solving the general momentum equations in fluid
mechanics when they are written in the Eulerian description. This is due to the effect of the
convective acceleration terms that lead to loss of stability of standard Galerkin FEM. For Stokes
flows (or for fluid flows formulated in the Lagrangian description) the convective terms vanish
from the momentum equations and, consequently, the equations can be solved with the Galerkin
FEM.

The problem, however, remains for obtaining stable solution for incompressible flows when
an equal order interpolation is used for the velocities and the pressure, as it is the case for the
element derived in the paper. This situation violates the so called inf-sup (or LBB) condition
and, hence, there is a need to use stabilization techniques for solving the mass balance equation
with the FEM [11, 39].

4



3. STABILIZED FIC FORMS OF THE MASS BALANCE EQUATION

In our work the stabilized form of the mass balance equation is obtained using the Finite
Calculus (FIC) procedure [26]–[31],[33]–[35]. We will use both the second order form of the mass
balance equation for an incompressible fluid obtained using the FIC method in space, as well as
the FIC form of the mass balance equation in time. These forms have the following expressions.

Second order FIC mass balance equation in space

εv +
h2
i

12

∂2εv
∂x2

i

= 0 in Ω i = 1, ns (9)

FIC mass balance equation in time

εv +
δ

2

∂εv
∂t

= 0 in Ω (10)

Eq.(9) is obtained by expressing the balance of mass in a rectangular domain of finite size
(with space dimensions h1×h2 for 2D problems) and retaining higher order terms in the Taylor
series expansions than those typically used in the infinitesimal theory for expressing the change
of mass along the sides of the balance domain. The characteristic lengths hi are related to the
finite element sizes in the discretized problem, as it will be explained later.

Eq.(10), on the other hand, is obtained by expressing the balance of mass in a domain of
infinitesimal size in space and of finite dimension in time, where δ is a characteristic time value.

In Eqs.(9) and (10) the terms involving hi and δ play the role of stabilization terms respec-
tively. The form of the hi and δ parameters will be defined later. Note that for hi → 0 and
δ → 0 the standard expression of the mass balance equation (8) is recovered in all cases.

The derivation of Eqs.(9) and (10) for a 1D problem are shown in [37].

4. FIC FORM OF THE MASS BALANCE EQUATION IN TERMS OF THE MO-
MENTUM EQUATIONS

We will derive next a more useful FIC form of the stabilized mass balance equation expressed
in terms of the momentum equations.

From the momentum equations (6) we obtain (neglecting the space changes of the viscosity
µ in the term involving εv)

2

3
µ
∂εv
∂xi

= −ρ∂vi
∂t

+
∂

∂xj
(2µεij) +

∂p

∂xi
+ bi = −ρ∂vi

∂t
+ r̂mi i, j = 1, ns (11)

From the last equation we deduce

∂εv
∂xi

=
3

2µ

[
−ρ∂vi

∂t
+ r̂mi

]
i = 1, ns (12)
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In the last two equations r̂mi is a static momentum term defined as

r̂mi =
∂σ̂ij
∂xj

+ bi with σ̂ij = 2µεij + pδij (13)

Let us introduce ∂εv
∂xi

from Eq.(12) intro Eq.(9). This gives, after small algebra

εv +
h2
i

12

∂

∂xi

(
∂εv
∂xi

)
= ρεv +

h2
i

8µ

∂

∂xi

(
−ρ∂vi

∂t
+ r̂mi

)
i = 1, ns (14)

Observing the term involving the time derivative of vi in Eq.(14) gives

∂

∂xi

(
−ρ∂vi

∂t

)
= −ρ ∂

∂t

(
∂vi
∂xi

)
= −ρ∂εv

∂t
(15)

Substituting Eq.(15) into (14) gives

εv +
h2
i

8µ

(
−ρ∂εv

∂t
+
∂r̂mi

∂xi

)
= 0 (16)

On the other hand, from Eq.(10) we deduce

−∂εv
∂t

=
2

δ
εv (17)

Substituting Eq.(17) into (16) gives

εv +
h2
i

8µ

(
2ρ

δ
εv +

∂r̂mi

∂xi

)
= 0 (18)

In the following we will assume hi = h where h is a characteristic length that will be related
to a typical average dimension of each finite element in the mesh. Multiplying Eq.(18) by 8µ

h2

gives, after grouping some terms,

εv + τ
∂r̂mi

∂xi
= 0 (19)

where τ is a stabilization parameter given by

τ =

(
8µ

h2
+

2ρ

δ

)−1

(20)

Eq.(19) is the FIC form of the stabilized mass balance equation. This equation will be taken
as the starting point for deriving the stabilized FIC-FEM formulation. Note again that for
τ = 0, the standard form of the incompressibility condition (8) is obtained.
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5. VARIATIONAL EQUATIONS

5.1. Variational expression of the momentum equation

Multiplying Eq.(1) by arbitrary test functions wi(x) (with dimension of velocity) and inte-
grating over the analysis domain Ω gives the standard weighted residual form of the momentum
equations as ∫

Ω
wi

(
ρ
∂vi
∂t
− ∂σij
∂xj

− bi
)
dΩ = 0 (21)

Integrating by parts the term involving σij and making use of the Neumann boundary con-
ditions (7b), yields the standard principle of virtual power as [4, 39]∫

Ω
wiρ

∂vi
∂t
dΩ +

∫
Ω
δεijσijdΩ−

∫
Ω
wibidΩ−

∫
Γt

wit
p
i dΓ = 0 (22)

where δεij = 1
2

(
∂wi
∂xj

+
∂wj

∂xi

)
is an arbitrary (virtual) strain rate field.

Substituting the expression of the stresses from Eq.(2) into (22) gives∫
Ω
wiρ

∂vi
∂t
dΩ +

∫
Ω

[
δεij2µ

(
εij −

1

3
εkkδij

)
+ δεvp

]
dΩ−

∫
Ω
wibidΩ−

∫
Γt

wit
p
i dΓ = 0 (23)

Eq.(23) can be written in matrix form as∫
Ω
wTρ

∂v

∂t
dΩ +

∫
Ω
δεεεεεεεεεεεεεεTDεεεεεεεεεεεεεεdΩ +

∫
Ω
δεεεεεεεεεεεεεεTmp−

∫
Ω
wTbdΩ−

∫
Γt

wT tpdΓ = 0 (24)

In Eq.(24) w,v, εεεεεεεεεεεεεε are vectors containing the weighting functions, the velocities and the strain
rates, respectively; b and tp are body force and surface tractions vectors, respectively; D is the
viscous constitutive matrix and m is an auxiliary vector. These vectors are defined as (for 3D
problems)

w = [w1, w2, w3]T , v = [v1, v2, v3]T

εεεεεεεεεεεεεε = [ε11, ε22, ε33, 2ε12, 2ε13, 2ε23]T , b = [b1, b2, b3]T , tp = [tp1, t
p
2, t

p
3]T

D = µ



4
3 −2

3 −2
3 0 0 0

4
3 −2

3 0 0 0
4
3 0 0 0

1 0 0
Sym. 1 0

1

 , m = [1, 1, 1, 0, 0, 0]T

(25)

The 2D form of above expressions is straightforward. For instance, the 2D expression of
matrix D is obtained by deleting the rows and columns 3, 5 and 6 in Eq.(25).
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Remark 1. From the definition of m and D and Eqs.(2), (3) and (5) we deduce

σσσσσσσσσσσσσσ = s + mp , s = Dεεεεεεεεεεεεεε and εv = mTεεεεεεεεεεεεεε (26)

where σσσσσσσσσσσσσσ = [σ11, σ22, σ33, σ12, σ13, σ31]T , s = [s11, s22, s33, s12, s13, s23]T are the stress and
deviatoric stress vectors, respectively.

5.2. Variational expression of the stabilized mass balance equation

Multiplying equation (19) by arbitrary test functions q(x) (with dimension of pressure)
defined over the analysis domain Ω and integrating over Ω gives∫

Ω
qεvdΩ +

∫
Ω
qτ
∂r̂mi

∂xi
dΩ = 0 (27)

Let us integrate by parts the second integral in Eq.(27) over a mesh of Ne elements each one
with area Ωe and boundary Γe. This yields

Ne∑
e=1

{∫
Ωe

qεvdΩ−
∫

Ωe

τ
∂q

∂xi
r̂mi dΩ +

∫
Γe

qτnir̂mi dΓ

}
= 0 (28)

where ni are the components of the unit normal vector to the element boundary Γe. Note that
Γe is a side for a 3-noded triangle and a face for a 4-noded tetrahedron.

Remark 2. In Eq.(28), the second integral over the domain Ωe involving ∂q
∂xi

is zero for a
piecewise constant approximation of the weighting function q over the elements. This
situation occurs for the P1/P0+ elements presented in this work.

From the definition of r̂mi of Eqs.(13) and (1) we deduce

r̂mi = ρ
∂vi
∂t

+
2µ

3

∂εv
∂xi

(29)

Multiplying by the normal components gives

r̂mini = ρ
∂vn
∂t

+
2µ

3

∂εv
∂n

(30)

where vn = vini is the projection of the velocity in the direction of the normal to the element
boundary and ∂εv

∂n = ∂εv
∂xi

ni is the derivative of εv in the normal direction.

The term µ∂εv∂n at an element boundary Γea connecting elements e and a can be computed
as

2

3
µ
∂εv
∂n

=
2

lea

(
2

3
µ+ε+

v −
2

3
µ−ε−v

)
(31)
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where (·)+ and (·)− denote the values of the relevant magnitude at the external and internal
points adjacent to the element boundary, respectively and lea is the characteristic length of
the boundary. For triangles lea is taken as the side lenght (Figure 1). For 4-noded tetrahedra
lea = 2(Ωea)

1/2 where Ωea is the area of the triangular face connecting elements e and a.

(a) (b)

2

3
µ
∂εv
∂n

=
2

lea

(
2

3
µ+ε+

v −
2

3
µ−ε−v

)

(c) (d) Jump of 2
3
µεv across an element side

2

3
µ+ε+

v = 2µ
∂v+

n

∂n+
+ p+ − t+n at Γ+

ea

2

3
µ−ε−v = 2µ

∂v−n
∂n−

+ p− − t−n at Γ−ea[[
2

3
µεv

]]
=

[[
2µ
∂εv
∂n

+ p− tn
]]

Figure 1: (a) Patch of four triangles associated to a central 3-noded triangle e. (b) Definition of
∂εv
∂n at the side ij of element e. (c) Equilibrium of tractions at the side ij adjacent to elements
e and a. (d) Jump of 2

3µεv across a side of element e

Eq.(31) is just a simple (yet effective) model for computing µ∂εv∂n at the element boundary.
Indeed, more sophisticated procedures can be used [9].
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From the Neumann boundary conditions (7b) and Eq.(31) we deduce

2

3
µ+ε+

v = 2µ+∂v
+
n

∂n
+ p+ − t+n at Γ+

ea (32a)

2

3
µ−ε−v = 2µ−

∂v−n
∂n

+ p− − t−n at Γ−ea (32b)

where indices + and − denote values at the external and internal sides Γ+
ea and Γ−ea of the element

boundary, respectively. In Eqs.(32) t+n and t−n are the normal tractions respectively acting at
Γ+
ea and Γ−ea (Figure 1c).

Substituting Eqs.(32) into (31) gives

2

3
µ
∂εv
∂n

=
2

lea

[[
2µ
∂vn
∂n

+ p− tn
]]

Γe

(33)

where [[a]] denotes the jump of the magnitude a across the element boundary Γe, i.e. [[a]] =
a+ − a−.

From the equilibrium of tractions at the element boundaries we obtain

[[tn]] = t+n − t−n = tpn = [tp]T n+ (34)

where tpn is the external normal traction acting on the element side in the direction of the normal
to Γ+

ea (Figure 1). Clearly for unloaded boundaries tpn = 0 and, consequently, [[tn]] = 0.
We note that above derivations are independent of the choice of Γ+

ea and Γ−ea.
Substituting Eq.(33) into (30) and this one into (28) gives the final stabilized variational

form of the mass balance equation as

Ne∑
e=1

{∫
Ωe

qεvdΩ−
∫

Ωe

τ
∂q

∂xi
r̂midΩ +

∫
Γe

2τ

le
q

(
ρle

2

∂vn
∂t

+

[[
2µ
∂vn
∂n

+ p− tn
]])

dΓ

}
= 0 (35)

where le are the lengths of the element sides.
For element boundaries laying on the Dirichlet boundary Γv, r̂mini = 0 and the boundary

term vanishes from Eq.(35). This is justified by the fact that both ∂vn
∂t and ∂εv

∂n are zero at Γv.

Remark 3. At element boundaries laying on an external Neumann boundary Γt, t
+
n = 0, n+ =

−n− = ne and, hence, [[tn]] = −tpn at Γt.

Remark 4. The boundary integral in Eq.(35) resembles the jump stabilization terms across
element sides proposed by different authors for fluid flow problems [3, 9, 12, 14, 17, 23]. It
is remarkable that Eq.(35) emanates naturally from the FIC formulation. Also, the form
of Eq.(35) introduces the effect of the acceleration in the normal direction to the element

10



side, as well as the effect of the external surface tractions acting on the element side. These
two terms have proven to be important for the improved mass conservation and overall
stability of the numerical solution of the multifluid problems solved in this paper and also
for free surface homogeneous fluid flows [37].

Remark 5. For steady state problems the acceleration term ρ∂vn∂t vanishes from the boundary
integral in Eq.(35).

6. FEM DISCRETIZATION

We discretize the analysis domain into a mesh of Ne finite elements in the standard manner.
In our work we will choose simple 3-noded triangles (for 2D problems) and 4-noded tetrahedra
(for 3D problems). The velocity is linearly interpolated in terms of the nodal values, while a
discontinuous linear interpolation for the pressure over each element is chosen, i.e.

vi =
n∑
j=1

Nj v̄
j
i , p = p̄e + p̃(x) (36)

where Ni are the standard linear shape functions for simplicial elements, n is the number of
element nodes (n = 3/4 for 2D/3D problems), v̄ji denotes the value of the ith velocity component
for the jth node of an element, p̄e is a constant pressure field over each element and p̃(x) is a
discontinuous linear pressure field chosen as (Figure 2)

p̃(x) = (xc − x)Tb (37)

where xc are the coordinates of the element midpoint.
Note that p̃(x) satisfies the steady state form of the momentum equation for a linear velocity

field and constant body forces bi, i.e.

∂p̃

∂xi
+ bi = 0 (38)

The actual unknowns of the problem are the nodal velocities v̄ji and the constant pressure
field p̄e for each element (Figure 3).

We will choose now Ne piecewise constant unit weighting functions qe(x) so that qe(x) = 1
and ∂qe

∂xi
= 0 if x ∈ Ωe and qe(x) = 0 if x 6∈ Ωe. With these assumptions the variational form

(35) for the stabilized mass balance equation simplifies for 3-noded triangles to∫
Ωe

εvdΩ +
3∑
i=1

2τ

(
ρlei
2

∂vn
∂t

+

[[
2µ
∂vn
∂n

+ p− tn
]])

= 0 , e = 1, Ne (39)

where the sum in the second term extends over the three sides of each triangular element and
lei is the length of the ith element side.
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Figure 2: One dimensional representation of the discontinuous pressure field. (a) Constant
element pressure (p̄e) and linear pressure field (p̃). (b) Pressure field p = p̄e + p̃ over the
element. (c) Discontinuous linear pressure field over a three 1D element patch

Remark 6. For 4-noded tetrahedra the sum in Eq.(39) extends over the four faces of the
tetrahedra and lei is a characteristic distance for the ith face with area Ωe

i computed
as lei = 2(Ωe

i )
1/2 where Ωe

i is the area of the face.

Substituting the approximation (36) into Eqs.(39) and (24) and choosing a Galerkin form
with wj = Nj gives the discretized expression of the momentum and (stabilized) mass balance
equations as

M ˙̄v + Kv̄ + Qp̄− fv = 0 (40a)

QT v̄ + Sp̄− fp = 0 (40b)

with

v̄ =


v̄1

v̄2

...
v̄N

 , v̄j = [v̄j1, v̄
j
2, v̄

j
3]T and p̄ = [p̄1, p̄2, · · · , p̄Ne ]T (40c)

where N is the number of nodes in the mesh. The different matrices and vectors in Eqs.(40a,b)
are assembled from the element contributions given in Box 1 for 3-noded triangles.
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Figure 3: Nodal velocities and element pressure variables at a patch of four 3-noded triangles

Remark 7. The FEM approximation (36) yields the strain rates and the stresses within an
element in terms of the nodal velocities and pressure as

εεεεεεεεεεεεεε =
n∑
j=1

Bjv̄
j , εv = mT

n∑
j=1

Bjv̄
j

s = D
n∑
j=1

Bjv̄
j , σσσσσσσσσσσσσσ = D

n∑
j=1

Bjv̄
j + mp̄e

(41)

where Bj is given in Box 1 for 2D problems.

7. SOLUTION OF THE DISCRETIZED EQUATIONS

The discretized form in time of the system of Eqs.(40) is expressed as

M
n+1v̄ − nv̄

∆t
+ Kn+1v̄ + Qn+1p̄− fv = 0 (42a)

QT n+1v̄ + Sn+1p̄− fp = 0 (42b)

A symmetric monolithic form of Eq.(42) can be written as[
1

∆tM + K Q

QT S

]
n+1v̄

n+1p̄

 =

{
fv + 1

∆tM
nv̄

fp

}
(43)

The steady state form of Eq.(43) is simply[
K Q

QT S

]{
v̄

p̄

}
=

{
fv

fp

}
(44)
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Me
ij =

∫
Ωe

ρNT
i NjdΩ , Ke

ij =

∫
Ωe

BT
i DBjdΩ , Qe

ij =

∫
Ωe

BT
i mdΩ

See = −2
(
τ ea + τ eb + τ ec

)
, Seb = 2τ eb , Sec = 2τ ec , Sea = 2τ ea

Bi =


∂Ni

∂x1
0

0
∂Ni

∂x2
∂Ni

∂x2

∂Ni

∂x1

 , Ni =

[
Ni 0
0 Ni

]
, m = [1, 1, 0]T

fevi =

∫
Ωe

NT
i bdΩ +

∫
Γt

NT
i tdΓ

fpe = −
∑

r=a,b,c

2τ er
(
ρler
2

∂vn
∂t

+

[[
2µ
∂vn
∂n

+ (xTc − xTer)b− tn
]])

where ler is the length of the side connecting elements e and r and xer is the

mid-point of the side. For continuous body forces between elements
[[
xT
erb
]]

= 0

The expression of τer is given in Eqs.(45) and (46).

Box 1. Element matrices and vectors in Eqs.(40) for 3-noded triangles (Figure 1)

Note that the terms involving the normal velocity to the element, the normal tractions to
the side and the term emanating form the side discontinuous linear pressure field p̃ have been
incorporated into the force vector fp in Eq.(40b). An obvious alternative will be to add the
contribution of these terms to matrices Q and S in the l.h.s. of this equation.

Remark 8. The stabilization parameter τ of Eq.(20) is computed at each element boundary ij
connecting elements i and j as

τ = τ ij =

(
8µij
l2ij

+
2ρij
∆t

)−1

(45a)

where lij is a characteristic length of the element boundary. For triangles lij is taken as
the side length. For 4-noded tetrahedra lij = 2(Ωij)

1/2, where Ωij is the area of the face
connecting elements i and j. The material parameters µij and ρij are computed as

µij =
1

2
(µi + µj) , ρij =

1

2
(ρi + ρj) (45b)
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where indices i and j denote the element where the material parameter is computed.

Remark 9. For the steady state case the stabilization parameter of Eq.(45a) is computed as

τ ij =

(
8µij
l2ij

+
2ρij |vij |
lij

)−1

(46)

with vij being the velocity vector of the mid-point of the boundary connecting elements i
and j.

The above expressions of the stabilization parameter are similar to those used by many
stabilization methods [11, 39].

8. EXTENSION TO THE NAVIER-STOKES EQUATIONS

The momentum equations for Navier-Stokes flows are written in the Eulerian framework as

rmi := ρ

(
∂vi
∂t

+ vj
∂vi
∂xj

)
− ∂σij
∂xj

− bi = 0 (47)

Note that the difference with Eq.(1) is that the convective acceleration terms are now ac-
counted for in Eq.(47).

The constitutive equation and the boundary conditions are identical to Eqs.(2)–(4) and (7),
respectively.

The mass balance equation is given by Eq.(8). The stabilized form is given by Eq.(19).
The FEM solution of the Navier-Stokes equation for incompressible fluids requires a stabilized

numerical method that can capture the internal layers introduced by the convective accelera-
tion terms, as well as for satisfying the inf-sup condition introduced by the incompressibility
constraint. Different stabilization procedures have been proposed in the past two decades. An
overview can be found in [11, 39]. In our work we use the FIC approach for obtaining stabilized
FEM solutions for the Navier-Stokes equations [26]–[31],[33]–[35].

In the FIC method the momentum equations are derived in a balance domain of finite size.
This yields a non-local form of the equations. For the ith momentum equation we have

rmi −
hij
2

∂rmi

∂xj
= 0 i, j = 1, ns (sum in j only) (48)

where hij are characteristic distances that define the balance domain [28]–[30].
For consistency reasons, in the FIC method the Neumann boundary conditions expressing

balance of tractions at the boundary Γt are also derived in a finite domain adjacent to the
boundary. The modified Neumann boundary conditions are written as

σijnh − tpi +
hin
2
rmi = 0 i, j = 1, ns at Γt (49)
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where hin = hijnj .
Applying the standard weighted residual procedure to Eq.(48) we obtain∫

Ω
wirmidΩ−

∫
Ω
wi
hij
2

∂rmi

∂xj
dΩ = 0 (50)

where wi are standard weighting functions.
Integrating by parts the second integral in (50) assuming that wi = 0 on Γv and using the

modified Neumann boundary conditions (49) we obtain∫
Ω
wirmidΩ +

Ne∑
e=1

∫
Ωe

hij
2

∂wi
∂xj

rmidΩ = 0 (51)

The characteristic distances can be defined in a number of ways. For instance choosing

hij = he
vi
|v| (52)

where he is a characteristic distance for element e, reproduces the standard SUPG method
[11, 39].

The effect of sharp internal gradients in the solution can be introduced by defining hij as

hij = hev
vi
|v| + heg

1

|v|
∂vi
∂xj

(53)

The first term in the r.h.s. of Eq.(53) introduces the SUPG stabilization while the second
term introduces a shock-capturing type of stabilization. In Eq.(53) hev and heg are appropriate
characteristic distances for 1D elements hev = heg = le. The simplest choice for simplicial 2D and

3D elements is hev = heg = 2[Ωe]1/ns .
As for the treatment of the mass balance equation, the same procedure explained in Section

5.2 has been applied. Hence, the stabilized mass balance expression is identical to Eq.(19). Also,
the corresponding variational form of the mass balance equation coincides with Eq.(35).

The final system of discretized equations using P1/P0+ elements is identical to Eq.(40). For
3-noded triangles, all matrices and vectors coincide with the expressions of Box 1 except K and
fv which are now given by (for each element)

Ke = Ke
0 + Ke

v + Ke
s , f ev = f ev0 + f es (54)

In Eq.(54) Ke
0 is the viscous contribution coinciding with the expression of Ke of Box 1 and

Ke
v and Ke

s are the convective and stabilization contributions for the element given by

Ke
vij =

∫
Ωe

ρNi(v
T∇∇∇∇∇∇∇∇∇∇∇∇∇∇Nj)InsdΩ , Ke

sij =

∫
Ωe

1

2
NiG

TH(∇vT )TNjdΩ (55a)
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where Ins is the ns × ns unit matrix and

G =

∇∇∇∇∇∇∇∇∇∇∇∇∇∇ 0 0
0 ∇∇∇∇∇∇∇∇∇∇∇∇∇∇ 0
0 0 ∇∇∇∇∇∇∇∇∇∇∇∇∇∇

 , H =

h1 0 0
0 h2 0
0 0 h3

 , hi =


hi1
hi2
hi3

 , ∇∇∇∇∇∇∇∇∇∇∇∇∇∇ =



∂

∂x1
∂

∂x2
∂

∂x3


(55b)

In Eq.(54) f ev0 coincides with the expression of f ev in Box 1 and f es is the contribution from
the stabilization terms given by

f esi =

∫
Ωe

1

2
NT
i G

THbdΩ (56)

The general form of hij of Eq.(53) can be used in (56) to introduce SUPG and/or shock
capturing effects in the stabilized formulation, as appropriate.

For the problems we are solving in this work the velocity field is free from internal layers.
Therefore, good results are obtained with the standard Galerkin form of the momentum equa-
tions neglecting the stabilization term. The full stabilized formulation expressed by Eq.(51),
with hij given by Eq.(53), should however be used for the general solution of Navier-Stokes
problems involving high gradients of the velocity.

9. PARTICULARIZATION FOR LAGRANGIAN FLOWS

The formulation presented in Sections 2–6 for Stokes flows in an Eulerian framework can be
easily particularized for analysis of a viscous fluid flow using a Lagrangian description of the
motion [4].

The relevant change is the definition of the acceleration term in the momentum equations.
In the updated Lagrangian formulation these are written as [4]

rmi = ρ
Dvi
Dt
− ∂σij
∂n+1xj

− n+1bi = 0 i, j = 1, ns (57)

where Dvi
Dt is the material derivative of the ith velocity component vi(

nx) of a material point
with coordinates nx at time t = tn. Also, the Cauchy stresses σij , the body forces bi and the
coordinates n+1xi are referred to the updated configuration at time tn+1 [4].

The material derivative of the velocity in the Lagrangian formulation is typically approxi-
mated as

Dvi
Dt

=
n+1vi(

n+1x)− nvi(
nx)

∆t
(58)

where nvi(
nx) denotes the value of the ith velocity component of the material point nx at time

tn, etc.
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Remark 10. The material derivative in an Eulerian description is expressed in a fixed control
domain as

Dvi
Dt

=
∂vi
∂t

+ vj
∂vi
∂xj

(59)

Eq.(59) is the form used in the Eulerian formulation of the Navier-Stokes equations (see
Eq.(47)). Neglecting the convective acceleration term in Eq.(59) yields the expression used
in Eq.(1) for Stokes flows.

A difficulty in the Lagrangian formulation of flow problems is the need for tracking the
motion of the material points in space and time. The authors have developed in recent years
a particular class of Lagrangian method for analysis of fluid flow problems termed the Particle
Finite Element Method (PFEM, www.cimne.com/pfem). The PFEM treats the nodes in a
continuum as virtual particles that can freely move and even separate from the main domain
representing, for instance, the effect of water drops in a splashing fluid or soil particles in an
excavation problem. A finite element mesh connects the nodes defining the discretized domain
where the governing equations are solved using the FEM. An advantage of the Lagrangian
formulation in the PFEM is that the convective terms disappear from the fluid equations. The
difficulty is however transferred to the problem of adequately (and efficiently) moving the mesh
node using a fast mesh regeneration procedure at each time step. The theory and applications
of the PFEM are reported in [1, 8],[18]–[21],[25, 32],[36]–[38].

The particularization of the formulation of the P1/P0+ triangle presented in Sections 2–6
to the Lagrangian analysis of viscous flows is straightforward and simply implies computing the
acceleration term with the expression given by Eq.(58). The rest of the terms are identical to
those given in those sections.

In this work we have applied the Lagrangian formulation of the P1/P0+ triangle to the study
of multifluid problems with relatively small changes of the geometry of the fluid domain. The
application of the P1/P0+ triangle and tetrahedra to a wider class of Lagrangian flow problems
using the PFEM will be the subject of further work of the authors.

10. EXAMPLES

In this section we present the solutions obtained by the FIC method for four benchmark
problems. The first two examples are steady state problems formulated in the Eulerian frame-
work. The last two examples are transient problems formulated in the Lagrangian framework.
In all these examples, the pressure solution has a strong discontinuity across the interface where
the fluid viscosities are relevant and distinct. These pressure jumps occur either due to a relevant
normal derivative of the velocity or in its absence due to a prescribed over-pressure force at the
interface.
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Figure 4: Description of the steady-state examples. (a) fixed-mesh (Eulerian) extrusion problem
and (b) the Zhong’s problem.

10.1. Fixed-mesh (Eulerian) extrusion problem

This example deals with a flow entering a rectangular 2D domain from the left boundary
with a unit normal velocity and moving to the right where it finds an impermeable slip wall that
deviates the flow upwards and downwards [20]. The 2D domain occupies the region: (x, y) ∈
[0, 1] × [−0.5, 0.5] (Figure 4a). The upper-half and lower-half of the domain are occupied by
two immiscible fluids which have the same density (ρ1 = ρ2 = ρ), but with distinct viscosities
(µ1 6= µ2). This problem has an analytical solution which can be expressed as follows.

v(x, y) =

[
1− x
y

]
, p(x, y) =


ρ

[
x− 1

2
(x2 + y2)− 7

24

]
+ (µ1 − µ2) ∀ y > 0

ρ

[
x− 1

2
(x2 + y2)− 7

24

]
− (µ1 − µ2) ∀ y < 0

(60)

As the pressure solution is known up to a constant, in Eq. (60) the later is chosen such that
the pressure has a zero mean value over the domain. At the interface (y = 0), due to a jump in
the viscosities and a relevant directional derivative of the velocity along its normal, the pressure
field has a jump across it.
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Remark 11. This is a steady state example involving the solution of the Navier-Stokes equa-
tions solved in the Eulerian framework (Section 8). Generally, the presence of the convec-
tive term in the momentum equation triggers both global and local numerical instabilities
which needs to be stabilized. However, these instabilities are manifested only when the
solution of the continuous problem involves layers. In examples like the current one veloc-
ity field does not contain layers. Hence, in this problem, we can obtain a good numerical
approximation to the velocity even without convective stabilization.

Figure 5a illustrates the pressure solution ph obtained by the P1-P0+ triangle. The domain is
discretized using a symmetric structured mesh of 2× 30× 30 elements. The material properties
are chosen to be: ρ = 5, µ1 = 5 and µ2 = 1. The velocity boundary conditions are chosen
to be of Dirichlet (essential) type, taking values given by the expression in Eq. (60). The
indeterminacy of the pressure solution is removed by imposing the zero-mean pressure condition
[11]. The nonlinear convective terms in the Navier-Stokes equations are linearized using the
Newton–Raphson method (Appendix A) and they converge in just two iterations for a tolerance
of 10−6.

Figure 5b illustrates the best approximation to the exact pressure solution p given in Eq.
(60) from the discrete pressure space Qh of piecewise constant pressure values over the elements
of the considered mesh. The best approximation Ph

L2p is chosen from Qh using the L2 norm

(‖ ? ‖ :=
√∫

Ω (?)2 dΩ) as the metric. Thus, Ph
L2p is the L2 projection of p onto Qh. It can be

obtained as follows: Find Ph
L2p ∈ Qh, such that∫

Ω
qh(p− Ph

L2p) dΩ = 0 ∀ qh ∈ Qh ⇒ ‖p− Ph
L2p‖ ≤ ‖p− ph‖ ∀ ph ∈ Qh (61)

Figure 5c illustrates the constant pressure solution ph (termed p̄e in Section 6) obtained by
the new P1-P0+ triangle and using an unstructured mesh. The unstructured mesh is generated
by small random perturbations of the interior nodes (excluding the nodes on the interface) of
the structured mesh followed by a Delaunay tessellation. Figure 5d illustrates the best approx-
imation Ph

L2p obtained using the same mesh.

Figure 6a shows the convergence of the error (p− ph) in the L2 norm with respect to mesh
refinement. This error is compared with the best approximation error (p − Ph

L2p). To measure
the convergence rate the domain is discretized by a sequence of symmetrical structured meshes
of 2 × n × n elements, using n ∈ {20, 24, 28, 32, 36, 40, 44, 48, 52, 56}. The relative error in the
pressure solutions are measured as follows.

eh
pL2 =

‖p− ph‖
‖p‖ =

√∫
Ω(p− ph)2 dΩ√∫

Ω p
2 dΩ

(62)
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(a) Obtained solution ph; structured mesh.
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(b) Best approximation Ph
L2p; structured mesh.
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(c) Obtained solution ph; unstructured mesh.
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(d) Best approximation Ph
L2p; unstructured mesh.

Figure 5: Fixed-mesh (Eulerian) extrusion problem. The obtained pressure solutions compared
with the corresponding best approximations. The material properties are chosen as (ρ1, µ1) =
(5, 5) and (ρ2, µ2) = (5, 1).
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Figure 6: Error convergence in the L2 norm on mesh refinement for ph and (∇ · vh).

As expected for a piecewise constant pressure approximation, the convergence rate is found
to be one for both solutions. Further, the error line of the numerical solution ph is found to
be close to the error line of the best approximation Ph

L2p, indicating the good accuracy of the

obtained solution. Additionally, in Figure 6a the convergence in the L2 norm of the divergence of
the velocity is also shown. As the exact solution is solenoidal, this error is measured as follows.

‖∇ · vh‖ =

√∫
Ω

(∇ · vh)2 dΩ (63)

where vh is the velocity solution obtained with the P1/P0+ triangle. The convergence rate for
‖∇ · vh‖ is found to be close to 1.5, which is more than the expected first-order rate. This
super-convergence for ‖∇ ·vh‖ could be due to the smooth (linear, cf. Eq. (60)) solution profile
for the velocity.

10.2. Zhong’s problem: buoyant Stokes flow with a columnar viscosity structure

This example deals with the buoyancy-driven Stokes flow of a fluid with a columnar viscosity
structure and was first presented in [40]. It has been previously used as a benchmark in [13, 24].
It is an idealization of the mantle convection and the plate dynamics that occur in the subduction
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zones of the Earth. The temperature of the subducted plates are much colder than the ambient
mantle which in turn leads to sharp lateral variations in the viscosity. The 2D domain (cf.
Figure 4b) is a unit square: (x, y) ∈ [0, 1]× [0, 1]. The left-half and right-half of the domain have
viscosities given by µ1 = 1 and µ2 = 106, respectively. The density and the acceleration due
to gravity are specified as ρ(x, y) = − cos(πx) sin(πy) and g = (0,−1), respectively. Free-slip
boundary conditions are imposed everywhere on the domain boundary.

The evaluation 1 of the analytical solution is described in [40] using the method of separation
of variables (used earlier in [16]) and the propagator matrix techniques [15]. The constant to
fix the pressure is chosen such that the latter has a zero mean value over the domain. Due to a
jump in the viscosities at the viscosity boundary (x = 0.5) and a non-zero directional derivative
of the velocity along its normal, the pressure field acquires a jump across it. The expression for
the pressure jump at the viscosity boundary can be written as follows.

[[p(x = 0.5, y)]] =
2|g|(µ2 − µ1)2 cosh2(π/2) cos(πy)

(µ1 + µ2)2 sinh2(π)− π2(µ2 − µ1)2
(64)

Figures 7a and 7c show the pressure solution ph obtained by the P1-P0+ triangle using
a structured mesh (2 × 30 × 30 elements) and an unstructured mesh (2 × 30 × 30 elements),
respectively. The corresponding best approximations in the L2 norm Ph

L2p are shown in figures
7b and 7d, respectively.

Figure 6b shows the convergence of the error (p− ph) in the L2 norm with respect to mesh
refinement. This error is compared with the best approximation error (p− Ph

L2p). As expected
for a piecewise constant pressure approximation, the convergence rate is found to be one for
both solutions. Further, the error line for the numerical solution ph is found to be close to the
error line of the best approximation Ph

L2p, indicating the good accuracy of the obtained solution.

Additionally, in figure 6b the convergence in the L2 norm of the divergence of the velocity is
also shown. As expected for a piecewise linear velocity approximation, a first-order convergence
rate is found for ‖∇ · vh‖.

10.3. Moving-mesh (Lagrangian) extrusion problem

This is a transient example where the initial configuration is a rectangular 2D domain oc-
cupied by two immiscible fluids contained (due to the action of gravity) in a region bounded
with sufficiently high walls (cf. Figure 8a). Both the walls and the floor are considered to be
slippery. The floor and the left wall are fixed while the right wall is pushed towards left at a
constant prescribed velocity Vp. This is a free surface problem with an interface between the

1The algebraic work involved to arrive at a closed form analytical expression of the solution is very tedious
which includes the symbolic inversion of a 4×4 matrix. Thus, the analytical solution is often computed numerically
for a specified problem data.
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(a) Obtained solution ph; structured mesh.

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

XY

P
re

ss
ur

e

(b) Best approximation Ph
L2p; structured mesh.
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(c) Obtained solution ph; unstructured mesh.
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(d) Best approximation Ph
L2p; unstructured mesh.

Figure 7: Zhong’s problem: buoyancy-driven Stokes flow with a columnar viscosity structure in
a square domain with slip walls. The density, the acceleration due to gravity and the viscosities
are specified as ρ = − cos(πx) sin(πy), g = (0,−1), µ1 = 1 and µ2 = 106, respectively.
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Figure 8: Description of the transient examples. (a) moving-mesh (Lagrangian) extrusion prob-
lem and (b) Lagrangian example with fixed-walls and an unstable interface: the interface initially
has a serrated profile.

two immiscible fluids and the shape of the domain varies due to the action of the right wall.
The numerical solution is sought using a Lagrangian formulation of the problem (Section 9).

The fluid viscosities are chosen as µ1 = 1 and µ2 = 10. The fluid densities are chosen as
ρ1 = 1 and ρ2 = 5. The acceleration due to gravity is taken as [0,−10] m/s2 and the prescribed
velocity Vp = 0.1 m/s. The 2D domain has an initial length l1 = 0.8 m and height l2 = 0.4 m.
The upper-half of the domain is occupied by the fluid with properties ρ1, µ1. For these data, the
dynamics is dominated by the viscous term and hence in the exact solution the inertial effects
can be neglected.

As a shorthand notation, we denote by 0x and tx as the positions of an arbitrary fluid
particle at times t = 0 and t, respectively. Similar notation is used for the rest of the dependent
variables in the Lagrangian description, e.g. 0v and tv. Using this notation and the expressions
L1 := (l1 − Vpt) and L2 := (l1l2/L1), the exact solution to this problem can be expressed as
follows.

tx =

[
(L1/l1) 0

0 (L2/l2)

]
0v, tv :=

d

dt
(xt) =

vp
L1

[
−1 0
0 1

]
tv (65)

ta :=
d

dt
(tv) =

(
Vp
L1

)2 [
0 0
0 2

]
tx, t∇(tv) :=

d

dtx
(tv) =

Vp
L1

[
−1 0
0 1

]
(66)
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(a) initial state (t = 0); structured mesh.
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(b) final state (t = 2); structured mesh.
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(c) initial state (t = 0); unstructured mesh.
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(d) final state (t = 2), unstructured mesh.

Figure 9: Moving-mesh (Lagrangian) extrusion problem: the initial (t = 0) and final (t = 2)
configurations are independent to the choice of the mesh-type.

p(x, t) =


ρ1g(L2 − tY ) for L2 ≥t Y >

L2

2

ρ1g
L2

2
+ 2(µ2 − µ1)

Vp
L1

+ ρ2g

(
L2

2
−t Y

)
for

L2

2
>t Y ≥ 0

(67)

where ta denotes the acceleration of the fluid particle and tY is the y-coordinate of the trajectory
tx. The constant in the pressure solution given by Eq. (67) is chosen such that it takes a value
zero at the free surface. In the numerical solution, no boundary conditions are imposed for the
velocity at the free surface. On the rest of the boundary, Dirichlet (essential) conditions are
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imposed for the velocity. As the velocity boundary conditions are not exclusively of the Dirichlet
type, no further conditions need to be imposed for the pressure. For the sake of simplicity the
discretized (Lagrangian) equations are linearized using the Picard (Fixed-point) method. The
configuration tx is updated at every iteration. The time integration is done using the Newmark
method with the choice θ = 1/2 and β = 1/4 (zero dissipation; second-order accuracy). The
time increment is chosen as ∆t = 0.1s (Appendix B).

Figure 9b illustrates the final configuration (at time t = 2 s) obtained with the P1-P0+
triangle using a symmetric structured mesh of 2 × 24 × 12 elements. The initial configuration
is shown in Figure 9a. Figures 9c and 9d show the initial and final configurations when using
an unstructured mesh. For the initial domain area to be conserved the interface and the free
surface should raise to a height of 0.2667 m and 0.5333 m, respectively. This is indeed observed
in Figures 9b and 9d showing the good area conservation properties for the P1/P0+ triangle.

Figure 10a shows the pressure solution p2,h obtained using the structured mesh. As the two
fluids have distinct densities, it leads to a jump in both the pressure and its gradient at the
interface. Figure 10b shows the L2 projection of the exact pressure p2 given in Eq. (67) onto the
discrete pressure space Qh and is denoted as Ph

L2p
2. For the sake of comparison, the constants

in the discrete pressure solutions p2,h and Ph
L2p

2 are chosen a posteriori such that the minimum

value on the free surface is zero. Likewise, Figures 10c and 10d show the pressure solutions p2,h

and Ph
L2p

2 obtained on the unstructured mesh.
Figure 11 presents the same results as shown in Figure 10 but with the solutions projected

onto the x− z plane. In this view, the inter-element jumps in the obtained solution p2,h can be
better compared with those in the best approximation Ph

L2p
2. We see that on both meshes the

obtained solution p2,h is in good agreement with the best approximation Ph
L2p

2.
Figures 12a and 12b illustrate the effective pressure solution obtained with the P1/P0+

triangle using the structured and the unstructured meshes, respectively. Recall that the effective
pressure solution includes a prescribed linear field defined over each element given by Eq.(37).
A nearly identical figure is obtained by plotting the exact pressure solution given by Eq.(67),
thus indicating the good accuracy of the method.

Finally, in Figure 13 we present the time evolution of the error in the area for all the cases
discussed in this section. The relative error in the area is measured in three different ways

ehΩ :=

∑
e∈Ω

(0Ωe − tΩe)∑
e∈Ω

0Ωe

, ehΩ1
:=

∑
e∈Ω1

(0Ωe − tΩe)∑
e∈Ω1

0Ωe

, ehΩ2
:=

∑
e∈Ω2

(0Ωe − tΩe)∑
e∈Ω2

0Ωe

(68)

where 0Ωe and tΩe represent the initial and current (at time t) areas of an element with index e.
Ω1 and Ω2 denote the regions occupied by the two immiscible fluids, respectively and Ω := Ω1∪Ω2

is the domain. The indices 1 and 2 refer to the upper-half and lower-half regions of the domain.
ehΩ is the relative error in the total area of both fluids. ehΩ1

and ehΩ2
are the relative errors in the
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total area of the fluids occupying the regions Ω1 and Ω2, respectively. For the simulated time
period (2s), the maximum relative error is below 3.25× 10−4 for ehΩ, ehΩ1

and ehΩ2
.

10.4. Lagrangian example with fixed-walls and an unstable interface

Finally, we present another transient example where the two-fluid interface initially has a ser-
rated profile (thus unstable) and becomes straight in due course. This configuration (Figure 8b)
is obtained by meshing the domain with an unstructured mesh and identifying the elements that
occupy the upper-half of the domain to represent a fluid with lower density and the remaining
elements to represent the other fluid with a higher density.

To observe the interface evolution in a reasonable time period, fluid-pairs with low viscosities
are chosen. Further, to avoid sloshing-like effects that arise due to the low viscosities, all the
walls of the domain are fixed and are considered slippery. Thus, there are only buoyancy driven
low-speed motions in the fluid due to its initial unstable configuration.

Due to the small viscosities and low-speed motions, the pressure has a negligible jump across
the interface. In order to have a visible pressure jump, we prescribe a fictitious over-pressure
force at the interface given by the expression tI = −γn. Here n represents the outward normal
to the interface with respect to the heavier fluid and γ represents the prescribed jump in the
pressure value across the interface.

This problem is solved considering two fluid-pairs. For the first fluid-pair, the material
properties of the fluids on top and bottom are taken as (ρ1, µ1) = (1, 10−6) and (ρ2, µ2) =
(5, 10−5), respectively. At the interface, the over-pressure force is taken as γ = 5. The second
fluid-pair consists of sunflower oil on the top and water at the bottom. The material properties
for sunflower oil and water at 25◦C are (in International units) (ρ1, µ1) = (919, 4.9× 10−2) and
(ρ2, µ2) = (997, 8.9 × 10−4), respectively. At the oil–water interface, the over-pressure force is
taken as γ = 1000. The initial configuration is the same for both fluid-pairs, cf. figure 8b.
The time integration is done by the Newmark method with the choice θ = 1/2 and β = 1/4
(zero-dissipation; second-order accuracy). The time increment is chosen as ∆t = 0.01s. As no
re-meshing is done, the simulation is stopped after 100 time steps, i.e. a simulation time of 1s,
to avoid numerical difficulties associated with severe mesh deformations.

Due to the small viscosities, the profile of the interface will have an oscillatory behavior
(possibly damped due to momentum distribution in all directions) and a steady state can be
expected in due course. We use the total length of the interface as a metric to measure the
“distance” of the perturbed state of the interface from the stable horizontal profile. For an
oscillating interface profile, the interface length will have an oscillatory behavior and will take a
minimum value equal to 0.8 (horizontal length of the domain) whenever the interface profile is
horizontal.

Within the simulated time period, the P1-P0+ triangle is able to reproduce this oscillatory
behavior of the interface for the first fluid-pair, cf. Figure 14a. The interface length first attains
a minimum value of 0.80014 in eleven time steps (at t = 0.11s). The interface at this instant
attains a horizontal profile as shown in Figure 14c. However, near the end of the simulation
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we observe an unphysical increase in the interface length. This could be due to the numerical
difficulties associated to mesh-distortion (recall that no re-meshing is done here).

As the viscosities in the second fluid-pair (oil–water) are three orders of magnitude greater
than those for the first fluid-pair, it is reasonable to expect a greater time scale for the former.
Figure 14b shows that the oil–water interface length gradually reduces (i.e. the interface flattens)
and takes a minimum value of 0.80842 at t = 0.55s. The interface at this instant attains a nearly
horizontal profile as shown in Figure 14d. Past t = 0.55s, the interface length gradually returns
back to its initial value. However, the trend near the end of the simulation shows an unphysical
increase in the interface length, which again could be due to the numerical difficulties associated
to mesh-distortion.

Figure 15 shows the pressure solutions obtained for the considered fluid-pairs when their
interfaces first attain a minimum length. We observe jumps in the pressure across the interface
equivalent to the prescribed over-pressure forces, i.e. γ = 5 for the first fluid-pair (Figure 15a)
and γ = 1000 for the oil–water fluid-pair (Figure 15c). Figures 15b and 15d present the same
result as shown in Figures 15a and 15c, respectively, but with the solutions projected onto the
x − z plane. In this view, all the inter-element jumps in the obtained pressure solutions are
better seen.

The time evolution of the area-errors is shown in Figure 16 (both signed and absolute relative
errors). The area-errors are measured in the same way as it is done earlier in section 10.3, i.e.
using the expressions given in Eq. (68). For the simulated time period and the first fluid-pair,
we find |ehΩ1

| < 8× 10−4, |ehΩ2
| < 8× 10−4 and |ehΩ| < 10−8. Likewise for the oil–water fluid-pair

we find |ehΩ1
| < 4× 10−4, |ehΩ2

| < 4× 10−4 and |ehΩ| < 10−8. These results indicate the good area
preservation property of the P1-P0+ triangle.

11. CONCLUDING REMARKS

We have presented a 3-noded triangle and a 4-noded tetrahedra with a continuous linear
velocity and a discontinuous linear pressure field formed by the sum of an unknown constant
pressure field and a prescribed linear field that satisfies the steady state momentum equations
for a constant body force. In the so called P1/P0+ elements the “effective” pressure field
is linear, although the unknown pressure field is piecewise constant within each element. The
P1/P0+ elements have shown an excellent behaviour in terms of accuracy and mass conservation
for incompressible viscous flow problems with discontinuous material properties formulated in
either Eulerian or Lagrangian descriptions.
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(a) Obtained solution p2,h; structured mesh.
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(b) Best approximation Ph
L2p

2; structured mesh.
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(c) Obtained solution p2,h; unstructured mesh.
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(d) Best approximation Ph
L2p

2; unstructured mesh.

Figure 10: Moving-mesh (Lagrangian) extrusion problem. The obtained pressure solutions at
time t = 2 are compared with the corresponding best approximations. The material properties
are chosen as (ρ1, µ1) = (1, 1) and (ρ2, µ2) = (5, 10).
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(a) Obtained solution p2,h; structured mesh.
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(b) Best approximation Ph
L2p

2; structured mesh.
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(c) Obtained solution p2,h; unstructured mesh.
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(d) Best approximation Ph
L2p

2; unstructured mesh.

Figure 11: Moving-mesh (Lagrangian) extrusion problem: p2,h and Ph
L2p

2 projected onto the
x− z plane. The material properties are chosen as (ρ1, µ1) = (1, 1) and (ρ2, µ2) = (5, 10).
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(a) Effective pressure p2,h; structured mesh.
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(b) Effective pressure p2,h; unstructured mesh.

Figure 12: Moving-mesh (Lagrangian) extrusion problem: The effective pressure solutions at
time t = 2 which includes a prescribed linear field defined over each element. The material
properties are chosen as (ρ1, µ1) = (1, 1) and (ρ2, µ2) = (5, 10).
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(a) Area errors using a structured mesh.
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(b) Area errors using an unstructured mesh.

Figure 13: Moving-mesh (Lagrangian) extrusion problem: time evolution of the area errors. The
material properties are chosen as (ρ1, µ1) = (1, 1) and (ρ2, µ2) = (5, 10).
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(a) First fluid-pair interface length evolution.
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(b) Oil–Water interface length evolution.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

X

Y

(c) First fluid-pair domain at t = 0.11s.
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(d) Oil–Water domain at t = 0.55s.

Figure 14: Lagrangian example with fixed-walls and an unstable interface. The time evolution
of the interface length and the domain when the former first attains a minimum are shown. The
left column corresponds to a fluid-pair: (ρ1, µ1) = (1, 10−6), (ρ2, µ2) = (5, 10−5) and γ = 5.
The right column corresponds to oil–water interface: (ρ1, µ1) = (919, 4.9× 10−2) and (ρ2, µ2) =
(997, 8.9× 10−4) and γ = 1000.
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(a) Obtained solution P 0.11,h; 3D view.
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(b) P 0.11,h projected onto the x− z plane.
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(c) Obtained solution P 0.55,h; 3D view.
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(d) P 0.55,h projected onto the x− z plane.

Figure 15: Lagrangian example with fixed-walls and an unstable interface. The obtained pressure
solutions when the interface lengths first attain a minimum are shown. The top row corresponds
to a fluid-pair: (ρ1, µ1) = (1, 10−6), (ρ2, µ2) = (5, 10−5) and γ = 5. The bottom row corresponds
to oil–water interface: (ρ1, µ1) = (919, 4.9×10−2) and (ρ2, µ2) = (997, 8.9×10−4) and γ = 1000.
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(b) Absolute relative error (log-scale) in areas.
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(c) Signed relative error in areas.
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(d) Absolute relative error (log-scale) in areas.

Figure 16: Lagrangian example with fixed-walls and an unstable interface: time evolution of the
area errors are shown. The top row corresponds to a fluid-pair: (ρ1, µ1) = (1, 10−6), (ρ2, µ2) =
(5, 10−5) and γ = 5. The bottom row corresponds to oil–water interface: (ρ1, µ1) = (919, 4.9×
10−2) and (ρ2, µ2) = (997, 8.9× 10−4) and γ = 1000.
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APPENDIX A.

LINEARIZATION OF THE NAVIER-STOKES EQUATIONS

Consider the steady Navier–Stokes equations described in an Eulerian framework. The
stabilized momentum and mass balance equations discretized in space by the FEM lead to the
following system of equations,[

(K0 + Kv + Ks) Q

QT S

]{
v̄

p̄

}
=

{
fv

fp

}
(A.1)

It is assumed that the stabilization terms in matrices Ks and S and vector fp are linear, i.e.
they do not depend on the solution. The only nonlinear term that remains is, therefore, matrix
Kv obtained from the Galerkin FEM discretization of the convective term (Eq.(55a)).

The Newton–Raphson linearization of Eq.(A.1) gives the following system of equations.[
H Q

QT S

]{
δv̄

δp̄

}
=

{
fv − (K0 + Kv + Ks)v̄

m −Qp̄m

fp −QTv̄m − Spp̄
m

}
(A.2)

with
He = Ke

0 + Ke
v + K̄e

v + Ke
s (A.3)

where matrices Ke
0, K

e
v and Ke

s are given in Eqs.(54) and (55) and

K̄e
vij =

∫
Ωe

ρNi(∇∇∇∇∇∇∇∇∇∇∇∇∇∇vT )TNjdΩ (A.4)

In Eq.(A.2) index m denotes the iterations. Hence,

v̄m+1 = v̄m + δv̄ and p̄m+1 = p̄m + δp̄ (A.5)

The Picard linearization of Eq.(A.1) yields the following system of equations[
(K + Km

v + Ks) Q

QT S

]{
v̄m+1

p̄m+1

}
=

{
fv

fp

}
(A.6)

APPENDIX B.

TIME INTEGRATION IN THE LAGRANGIAN FRAMEWORK

The momentum and the stabilized mass balance equations discretized in space by the FEM
leads to the following system of equations in the Lagrangian framework

Mv̄ + Kv̄ + Qp̄ = fv (B.1)

QTv̄ + Sp̄ = fp (B.2)
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where, the matrices and vectors with sub-scripts are the ones that appear due to the stabilization
of the mass balance equation. Let ā = ∂v̄

∂t denote the vector of unknown nodal accelerations.
The momentum balance equation, i.e. Eq.(B.1), is a dynamic equation. On the contrary, the
stabilized mass balance equation, i.e. Eq.(B.2), is a quasi-static equation.

Using the Newmark algorithm the balance equations given in Eqs.(B.1) and (B.2) are inte-
grated in time ({nx, nv, na, np̄} → {n+1x, n+1v̄, n+1ā, n+1p̄}) as follows 1

∆t
M + θ n+1K θ n+1Q

θQT θ n+1S

{n+1v̄

n+1p̄

}
=

{
θ n+1fv + nrm

θ n+1fp

}
nrm :=

1

∆t
Mnv̄ − (1− θ) [nKnv̄ + nQnp̄− nfv] (B.3)

n+1ā =
1

θ∆t

(
v̄n+1 − nv̄

)
− (1− θ)

θ
na

n+1x = nx + ∆tnv̄ +
∆t2

2

[
(1− 2β)nā + 2βn+1ā

]
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fluids with jumps in the viscosity using a discontinuous pressure field, Comput. Mech. 46
(1) (2010) 115–124

39
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