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SUMMARY

A new Petrov–Galerkin (PG) method involving two parameters viz. α1, α2 is presented which yields the
following schemes on rectangular meshes: a) a compact stencil obtained by the linear interpolation of the
Galerkin FEM and the classical central FDM, should the parameters be equal, i. e. α1 = α2 = α and b)
the nonstandard compact stencil presented in [doi:10.1002/nme.3043] for the Helmholtz equation if the
parameters are distinct, i. e. α1 6= α2. The nonstandard compact stencil is obtained by taking the linear
interpolation of the diffusive terms (specified by α1) and the mass terms (specified by α2) that appear in
the stencils obtained by the standard Galerkin FEM and the classical central FDM, respectively. On square
meshes, these two schemes were shown to provide solutions to the Helmholtz equation that have a dispersion
accuracy of fourth and sixth order respectively [doi:10.1002/nme.3043]. The objective of this paper is to
study the performance of this Petrov–Galerkin method for the Helmholtz equation using nonuniform meshes
and the treatment of natural boundary conditions. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper is a continuation of [1] wherein a simple domain-based higher-order compact numerical
scheme involving two parameters viz. α1, α2 was presented for the Helmholtz equation. The
stencil obtained by choosing the parameters as distinct, i. e. α1 6= α2 was denoted therein as
the ‘nonstandard compact stencil’. The nonstandard compact stencil is obtained by taking the
linear interpolation of the diffusive terms (specified by α1) and the mass terms (specified by
α2) that appear in the stencils obtained by the standard Galerkin finite element method (FEM)
and the classical central finite difference method (FDM), respectively. Taking α1 = α2 = α , the
nonstandard compact stencil simplifies to the α-interpolation of the Galerkin FEM and the classical
central FDM stencils. For the Helmholtz equation, generic expressions for the parameters were
given that guarantees a dispersion accuracy of sixth-order should α1 6= α2 and fourth-order should
α1 = α2. As the findings reported therein and the corresponding analysis was done for compact
stencils, the contribution of the Galerkin FEM to the equation stencil corresponds to the choice of
the lowest order rectangular block finite elements. By blocks we mean Cartesian product of intervals
and by lowest order we refer to multilinear finite-element (FE) interpolation on these blocks. In
this paper we extend this scheme to unstructured meshes. The focus of this paper is twofold: a) to
design a Petrov–Galerkin (PG) method that reproduces on structured meshes the aforesaid numerical
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2 P. NADUKANDI, E. OÑATE AND J. GARCIA

scheme and b) to study the performance of this PG method on nonuniform meshes and for problems
subjected to natural boundary conditions.

The basic idea is to construct the basis functions of the test space from the standard FE shape
functions such that their scalar product results in the lumped mass matrix. These basis functions
are designed to have the following features: a) to be piecewise polynomials of the same degree as
the FE shape functions, b) to be a partition of unity (only in the sense that they add up to unity)
and c) to have a compact support. The last condition allows us to construct test spaces that vanish
at the Dirichlet boundaries and thus, advocating its admittance into weak formulations. However,
this condition makes these basis functions discontinuous at the element boundaries. In other words,
these basis functions belong to the class of regular† generalized functions and their derivatives must
be understood in the sense of a distribution. Hence the test space spanned by these basis functions is
nonconforming. As the row lumping technique is a critical step in the design of these basis functions
(to fulfill the partition of unity constraint), the current work is restricted only to those FEs where
this technique makes sense—simplicial FEs and multi-linear block FEs. We show that using these
basis functions with an appropriate single-valued model on the element boundaries, it is possible
to recover the classical FDM stencil of the Helmholtz equation on structured meshes. The linear
interpolation on the element boundaries (specified by α1) and the element interiors (specified by
α2) of these basis functions with the standard FE shape functions, will result in a new class of
basis functions. These new basis functions involving two parameters α1, α2 define the test space of
the proposed PG method that yields the nonstandard compact stencil of the Helmholtz equation on
structured meshes. The proposed PG method provides the counterpart of the aforesaid scheme on
unstructured meshes and allows the treatment of natural boundary conditions (Neumann or Robin)
and the source terms in a straight-forward manner.

This paper is organized as follows. In Section 2, we present the statement of the Helmholtz
equation in both the strong and the weak forms. In Section 3, we summarize the salient features
of the domain-based higher-order compact schemes proposed for the Helmholtz equation in [1]. In
Section 4, we present the trial and test spaces involved with the PG method proposed in this paper.
The trial space is spanned by the standard conforming FE shape functions. The basis functions that
span the test space are defined using the FE shape functions in a piecewise manner in the interiors
and the edges of the elements, respectively. The precise definition of the basis functions just in the
interior of the elements is given here and only the properties of the basis functions on the element
edges are discussed. The weak form associated with the PG method is also presented here. In Section
5, the weak form of the proposed PG method which involves distributional derivatives of the test
functions is presented in a form that is easier to compute and implement. Remarks are also made
here on the possibility to attain the sparsity pattern of the Galerkin FEM. In Section 6, we present the
definition of the basis functions on the element edges for the 1D linear and 2D bilinear FEs. It is also
shown here that on structured meshes the proposed PG method is able to recover the higher-order
compact schemes summarized earlier in Section 3. In Section 7, using some structured simplicial
meshes it is shown that the alpha-interpolation of the FEM and FDM stencils would yield a scheme
identical to the alpha-interpolation method (AIM) [4, 5] wherein the mass matrix that appears in
the Galerkin FEM is replaced by an alpha-interpolated mass matrix. The dispersion accuracy of
the schemes is discussed here and remarks are made on recovering the AIM via the proposed PG
method. Some examples are presented in Section 8, using uniform and nonuniform meshes in 2D
made up of bilinear FEs. These examples illustrate the pollution effect associated with the proposed
PG method through convergence studies in the L2 norm, the H1 semi-norm and the l∞ Euclidean
norm. Finally in Section 9, we arrive at some conclusions.

†to distinguish with singular generalized functions such as the Dirac’s ‘delta-function’. For further details see [2, 3].
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A PETROV–GALERKIN FORMULATION 3

2. PROBLEM STATEMENT

The statement of the multidimensional Helmholtz equation in the strong form is,

Lφ := −∆φ− ξ2
oφ = f(x) in Ω (1a)
φ = φp on ΓD (1b)

n ·∇φ−Mφ = q on ΓR (1c)

where ξo is the wavenumber, f(x) is the source term, φp is the prescribed value of φ on the
Dirichlet boundary ΓD. The operatorMmodels either the Dirichlet-to-Neumann (DtN) map should
the boundary-value problem (BVP) be posed on a domain with an exterior DtN boundary or the
Neumann/Robin boundary conditions should the BVP be posed on an interior domain.

For the solution of the BVP (1) we introduce the following set of functions:

H1
E := {ψ : ψ ∈ H1(Ω) and ψ = φp on ΓD} (2a)

H1
0 := {ψ : ψ ∈ H1(Ω) and ψ = 0 on ΓD} (2b)

where Hm(Ω) is the usual Sobolev space of functions with mth derivatives square integrable. The
variational statement of the BVP (1) can be expressed as follows: Find φ ∈ H1

E(Ω) such that,

B(ψ, φ) = F (ψ) ∀ψ ∈ H1
0 (Ω) (3a)

B(ψ, φ) :=

∫

Ω

[
∇ψ ·∇φ− ξ2

oψφ
]

dΩ−
∫

ΓR

ψMφ dΓ (3b)

F (ψ) =

∫

Ω

ψf dΩ +

∫

ΓR

ψq dΓ (3c)

Let Uh ⊂ H1(Ω) and V h ⊂ H1(Ω) be subspaces obtained via any appropriate discretization with
h being the discretization size parameter. Then corresponding to Equation (2) we define

UhE := {ψh : ψh ∈ Uh and ψh = φph on ΓD} (4a)

V h0 := {ψh : ψh ∈ V h and ψh = 0 on ΓD} (4b)

The statement of the so-called generalized Galerkin method applied to the weak form of the BVP
(1) is: Find φh ∈ UhE such that,

B(ψh, φh) = F (ψh) ∀ψh ∈ V h0 (5)

Taking the discrete test and trial spaces to be distinct, i. e. Uh 6= V h, we get a Petrov–Galerkin
method. Otherwise, i. e. taking Uh = V h we get a Bubnov–Galerkin method. Discretizing both the
trial and test spaces by finite elements we obtain the standard Galerkin FEM. This leads to the
approximations φh = NaΦa, ψh = NaΨa and Equation (5) reduces into the following system of
equations:

[
D− ξ2

oM−R
]
Φ = f (6a)

Dab =

∫

Ω

∇Na ·∇N b dΩ, Mab =

∫

Ω

NaN b dΩ, Rab =

∫

ΓR

NaMN b dΓ (6b)

fa =

∫

Ω

Naf(x) dΩ +

∫

ΓR

Naq dΓ (6c)

3. ALPHA-INTERPOLATION OF FEM AND FDM STENCILS

Consider the BVP (1) posed on an interior 2D domain subjected to Dirichlet boundary conditions
and let f(x) = 0. Further, let the domain be such that it permits a partition of the same using a
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structured mesh consisting of rectangular bilinear FEs. For the considered case we use the following
notation to represent a generic compact stencil corresponding to any interior node (i, j) of the
structured mesh.

{◦j+1, ◦j , ◦j−1}S{◦i−1, ◦i, ◦i+1}t = 0 (7)

where S represents the matrix of the stencil coefficients. For instance, if the standard mass matrix
obtained in the Galerkin FEM be assembled for a structured rectangular mesh then we may express
the corresponding stencil as follows:

Sm :=
`1`2
36
{1, 4, 1}t {1, 4, 1} =

`1`2
36




1 4 1
4 16 4
1 4 1


 (8)

{◦j+1, ◦j , ◦j−1}Sm{◦i−1, ◦i, ◦i+1}t :=
`1`2
36





(Φi−1,j+1 + 4Φi,j+1 + Φi+1,j+1)+
(4Φi−1,j + 16Φi,j + 4Φi+1,j)+
(Φi−1,j−1 + 4Φi,j−1 + Φi+1,j−1)



 (9)

The equation stencil for the Galerkin FEM method corresponding to any interior node (i, j) can
be written as Equation (7) with the following definition of the stencil coefficient matrix (S):

Sfem :=
`2
6`1
{1, 4, 1}t {−1, 2,−1}+

`1
6`2
{−1, 2,−1}t {1, 4, 1} − ξ2

o`1`2
36
{1, 4, 1}t {1, 4, 1} (10)

The stencil for the classical FDM method corresponding to any interior node (i, j) can be written
as Equation (7) with the following definition of S:

Sfdm :=
`2
6`1
{0, 6, 0}t {−1, 2,−1}+

`1
6`2
{−1, 2,−1}t {0, 6, 0} − ξ2

o`1`2
36
{0, 6, 0}t {0, 6, 0} (11)

The nonstandard compact stencil presented in [1] can be written as Equation (7) with the
following definition of S:

Sα1,α2 := (1− α1)
`2
6`1
{1, 4, 1}t {−1, 2,−1}+ α1

`2
6`1
{0, 6, 0}t {−1, 2,−1}

+ (1− α1)
`1
6`2
{−1, 2,−1}t {1, 4, 1}+ α1

`1
6`2
{−1, 2,−1}t {0, 6, 0}

− (1− α2)
ξ2
o`1`2
36
{1, 4, 1}t {1, 4, 1} − α2

ξ2
o`1`2
36
{0, 6, 0}t {0, 6, 0}

(12)

where α1, α2 are two nondimensional parameters. Note that we can obtain Sα1,α2 by taking
the linear interpolation of the diffusive terms (specified by α1) and the mass terms (specified
by α2) that appear in Sfem and Sfdm, respectively. Taking α1 = α2 = α , we arrive at a stencil
that is the α-interpolation of the Galerkin FEM and the classical central FDM stencils. i. e.
Sα,α = (1− α)Sfem + αSfdm. Choosing α1 = α2 = 0.5 we get a stencil that is the average of the
FEM and FDM stencils in 2D and it can be shown [1] to be equal to the stencil obtained by the
generalized fourth-order compact Padé approximation [6, 7] (therein using the parameter γ = 2).
Likewise taking α1 = 0 and α2 = α we get a stencil that results from the Galerkin FEM using
an α-interpolated mass matrix Mα := (1− α)M + αML. Taking α1 = 0 and α2 = 0.5, we obtain
the higher-order mass matrix scheme introduced in [8, 9], which can also be obtained using special
quadrature rules (cf. [10, pp. 446]). Further details on the choice of the parameters to recover various
stencils can be found in [1].

Considering square meshes, i. e. `1 = `2 = `, the parameters α1, α2 that appear in Sα1,α2 can
be chosen such that the numerical solution be sixth-order accurate, i. e. O

(
(ξo`)

6
)

or equivalently
O
(
ω3
)

where ω := (ξo`)
2. Recall that this is the maximum order of dispersion accuracy that can be

attained on any compact stencil [11]. All such α1, α2 should obey the following series expansion in
terms of ω.

α1 =
1

2
− ω

60
+

∞∑

m=2

amω
m ; α2 =

1

2
− ω

40
+

∞∑

m=2

bmω
m (13)
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A PETROV–GALERKIN FORMULATION 5

where am, bm are coefficients independent of ω. The relative phase error P and local truncation
error T of these sixth-order schemes can be expressed as follows:

P = r3ω
3 +O

(
ω4
)
, T = −2r3ω

3 +O
(
ω4
)

(14)

r3 =

[
5

110592
−
(
a2 − 4b2

48

)
+

(
1 + 576a2

27648

)
cos(4β) +

cos(8β)

774144

]
(15)

As am, bm (m ≥ 2) can be chosen arbitrarily, infinitely many sixth-order schemes can be designed
through Sα1,α2 . Of course some particular choice of am, bm may yield a scheme with better features.
For instance, am, bm may be chosen such that the local truncation error T be zero along some chosen
directions. Choosing α1 = α2, the dispersion accuracy can at most be fourth-order and to attain this
all such α1, α2 should obey the following series expansion in terms of ω.

α1 = α2 =
1

2
+

∞∑

m=1

amω
m (16)

The relative phase error P and local truncation error T of these fourth-order schemes can be
expressed as follows:

P = r2ω
2 +O

(
ω3
)
, T = −2r2ω

2 +O
(
ω3
)

(17)

r2 =

[(
1 + 36a1

576

)
+

(
1 + 60a1

2880

)
cos(4β)

]
(18)

4. TRIAL AND TEST SPACES

We use standard conforming finite elements to construct the trial space Uh. Thus, if Na represents
the corresponding FE shape function of an arbitrary node a and Φa the corresponding nodal
unknowns of the FE discretization, then every φh ∈ Uh can be expressed as φh = NaΦa. Let M
denote the mass matrix resulting from the inner product of the FE shape functions, cf. Equation 6b,
and let ML denote the lumped mass matrix. The standard row lumping technique used to obtain ML
from the consistent mass matrix M can be expressed as follows.

Mab
L := δab

∑

c

Mac = δab
∑

c

∫

Ω

NaN c dΩ = δab
∫

Ω

Na dΩ (19)

The fact that the shape functions Na being a partition of unity is used to arrive at the last part of
Equation (19). For every element K, we define a local transformation matrix W as follows:

W = (1− α2)I + α2MLM−1 (20)

where, I is the identity matrix and α2 is a nondimensional parameter. We now construct new basis
functions W̃ a using the shape functions Na of the trial space. As is done for the FE shape functions
Na, we first define W̃ a locally for each element and later patch them together to obtain their global
definitions. Thus within each element K, we define

W̃ a := WabN b (21)

Usually the above definition of W̃ a will lead to a loss of C0 continuity at the element edges. By
construction the domain of W̃ a is defined as the interior of the elements. Hence the support of the
global basis function W̃ a, denoted as supp(W̃ a), is the interior of the elements of a patch containing
the node a.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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6 P. NADUKANDI, E. OÑATE AND J. GARCIA

Table I. Local definition of the basis W̃a corresponding to some finite elements

Shape functions Na Basis W̃ a (choosing α2 = 1) Remarks

1 + ξ̄aξ

2

1 + 3ξ̄aξ

2
1D linear FE.

{ξ̄a} = {−1, 1}(1 + ξ̄aξ

2

)(1 + η̄aη

2

) (1 + 3ξ̄aξ

2

)(1 + 3η̄aη

2

)
2D rectangular bilinear FE.

{ξ̄a} = {−1, 1, 1,−1},
{η̄a} = {−1,−1, 1, 1}.

{(1− ξ − η), ξ, η} {(3− 4ξ − 4η), (4ξ − 1), (4η − 1)} 2D linear triangle FE.

ξ−1 0 +1

−1

−0.5

0

0.5

1

1.5

2

N2N1

W̃ 2W̃ 1

(a)

ξa− 1 a a+ 1

−1

−0.5

0

0.5

1

1.5

2
W̃ a

(b)

Figure 1. Basis functions W̃a corresponding to the 1D linear FE and choosing α2 = 1. (a) Element-wise
comparison of W̃a with the 1D FE shape functionsNa. (b) Illustration of the global basis W̃a corresponding
to an arbitrary node a patched element-wise. The open circles in these illustrations signify that the function

values taken by W̃a on the element edges are omitted.

If ML be obtained via the row lumping technique, then the basis functions W̃ a also form a
partition of unity. This statement can be verified within each element as follows:

∑

a

Mac
L M−cb =

∑

a

MacM−cb =
∑

a

δab (22a)

⇒
∑

a

Wab =
∑

a

(1− α2)δab + α2Mac
L M−cb =

∑

a

δab (22b)

⇒
∑

a

W̃ a =
∑

a

WabN b =
∑

a

δabN b =
∑

a

Na = 1 (22c)

where M−cb denotes the entry corresponding to the indices (c, b) of the matrix M−1. Note that
the global basis functions W̃ a, i. e. the element contributions obtained from Equation (21) patched
in a piecewise manner, are no longer a linear combination of the global FE shape functions Na.
Thus, W̃ a will span a function space distinct from the trial space Uh but with the same dimensions
as Uh. The local expressions (using α2 = 1) of the basis functions W̃ a corresponding to three
different element types is listed in Table I. Figure 1 illustrates the construction of the global basis
W̃ a corresponding to the 1D linear FE shape functions. Note the loss ofC0 continuity at the element
edges in Figure 1b. The open circles shown in Figure 1b signify that the function values taken by
W̃ a on the element edges are omitted.

We now construct a new composite basis W a defined in a piecewise manner as follows:

W a(x) :=

{
W̃ a(x) in the element interiors

Ŵ a(x) on the element edges
(23)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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A PETROV–GALERKIN FORMULATION 7

The composite basis W a is introduced for two reasons, viz. a) to ensure that W a be a partition
of unity also on the element edges and b) to be able to model Ŵ a such that we recover the
sparsity pattern of the Galerkin FEM. The later condition also allows us to construct test spaces
with functions that vanish on the Dirichlet boundary. Thus by construction we require that Ŵ a be
single-valued functions on the element edges with the following properties:

∑

a

Ŵ a = 1, and supp(Ŵ a) = supp(Na|Eh) (24)

where Eh represents the collection of all the element edges and Na|Eh represents the restriction
of Na on Eh. The precise definition of Ŵ a is delayed until Section 6.

From the properties of W̃ a and Ŵ a we have supp(W a) = supp(Na). Note that the global basis
W a are regular generalized functions, i. e. they are ordinary functions with a predefined jump
discontinuity at the element edges. Thus using Equations (20) and (21), the following result is
straight-forward.

∫

Ω

W aN b dΩ =
∑

K

∫

K

W̃ aN b dΩ = (1− α2)Mab + α2Mab
L (25)

We use the composite basis W a to construct the test space (denoted as V h∗) of the PG method.
Therefore every wh ∈ V h∗ can be expressed as wh = W aΨa, where Ψa is an arbitrary constant
associated with the node a. By construction the test space V h∗ has the same dimensions as that of
the trial space Uh. In the notation V h∗, the symbol ‘∗’ is used to emphasize that generally the test
space V h∗ is nonconforming, i. e. V h∗ 6⊂ H1(Ω). The statement of the proposed PG method applied
to the BVP (1) is : Find φh ∈ UhE such that,

B(wh, φh) = F (wh) ∀wh ∈ V h∗0 (26)

In order to compute the integral
∫

Ω
∇wh ·∇φh dΩ that appears in Equation (26), the derivatives

associated with wh must be understood in the sense of a distribution. Thus the proper setting
for the PG method is in the space of generalized functions. Recall that to arrive at the term∫

Ω
∇wh ·∇φh dΩ integration by parts needs to be done for an integral form of Equation (1a)

containing discontinuous test functions. This is the distinction of the current work from existing
stabilized FEM based PG methods that follows the theoretical framework originally proposed for
the Streamline–Upwind/Petrov–Galerkin (SUPG) method [12].

The distinction of the current work with Discontinuous–Galerkin (DG) methods is illustrated via
a schematic representation of the same in Figure 2. Figure 2a illustrates a generic DG method. Recall
that the weights on either side of an element edge in a DG method are not only discontinuous but
are also independent. The same applies to the trial solutions (φh) and in addition to this, models φ̂h
for φh are specified on the element edges. For conservative DG methods, φ̂h which is sometimes
named as the scalar numerical flux, is single valued on the element edges [13]. On the other hand,
Figure 2b illustrates the current PG method. Note that the test functions (wh) remain discontinuous
but they are no longer independent. The restriction of wh to the element interiors and on the element
edges are denoted as w̃h and ŵh, respectively. The trial solutions for the current PG method are
the standard FE solutions which are C0-continuous and are not independent on either sides of the
element edge.

The proposed PG method given by Equation (26) is similar to the generalized difference method
(GDM) presented in [14] and the finite volume methods (FVM) analyzed in [15]. The similarity is
in the nature of the trial and the test spaces—the trial space is taken as the standard FE space and
the test space consist of regular generalized functions. The distinction is in the definition of the test
space. In our work both the trial and test spaces are defined on the primary partition of the domain. In
the GDM and the FVM the test spaces are defined on the dual partition of a given primary partition.

Finally, we make note that test functions similar to W̃ a (with α2 = 1) were introduced earlier
in the context of dual mortar methods for non-overlapping domain decomposition techniques [16].

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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Test function, wh

w1
h

w2
h

K1 K2E

Trial solution, φh

φ1
h

φ2
h

K1 K2E

φ̂1
h

φ̂2
h

(a)

Test function, wh

w̃h

w̃h

K1 K2E

ŵh

Trial solution, φh

φh

φh

K1 K2E
(b)

Figure 2. Comparison of the test function wh and trial solution φh of a generic Discontinuous–Galerkin
(DG) method with those of the current Petrov–Galerkin (PG) method. Schematic representations of wh and
φh for (a) a DG method and (b) the current PG method. Note that unlike for the DG method, wh and φh
for the current PG method are not independent on either sides of the edge E. Also note that wh is a regular

generalized function and its derivatives must be understood in the sense of a distribution.

Therein, such test functions were called as local dual basis functions and were used to construct
the discrete Lagrange multiplier space. In the standard mortar methods, the interface solution
on the slave side depends globally on the values on the master side. The motivation for the
introduction of the local dual basis functions is to reduce this global dependence to a local one
without compromising the a priori error estimates obtained for the standard mortar methods. Thus,
the mortar map is represented by a diagonal matrix which allows the matching/coupling condition
to be realized explicitly.

5. WEAK FORM WITH GENERALIZED TEST FUNCTIONS

In this section we express Equation (26) in a form that is easier to compute and implement. By
choosing a regularization parameter ε, we first construct a sequence of piecewise continuous test
functions wεh ∈ V h ⊂ H1(Ω) which converges to wh ∈ V h∗ as ε→ 0. Substituting wεh in Equation
(5) and taking the limit ε→ 0 we get the weak form of the PG method using wh as defined earlier
in Equation (26).

Consider an arbitrary elementK with boundary ∂K and define two sub-domains within it viz.Ko

and Kε as shown in Fig 3a. The boundary that Kε shares with Ko is denoted by ∂Ko. The external
normals to ∂K and ∂Ko are denoted by n and no+ respectively. The normal no− := −no+. The
regularization parameter ε characterizes the width of the Kε sub-domain. Consider a regularized
piecewise continuous test function wεh over K whose definition can be split over Ko,Kε and ∂K as
follows:

wεh(x) :=





w̃h(x) ∀x ∈ Ko

τh(x) ∀x ∈ Kε

ŵh(x) ∀x ∈ ∂K

(27)

w̃h|∂Ko
= τh|∂Ko

, τh|∂K = ŵh (28)

Thus, as shown in Figure 3b, taking the limit ε→ 0 the test function wεh develops a sharp layer
at the element boundary ∂K and we arrive at a class of generalized test function wh which was
represented schematically in Figure 2b. Likewise, in the limit ε→ 0, the term ∇wεh will represent
the generalized derivative of the test function wh. Consider the term

∫
Ω
∇wεh ·∇φh dΩ which can

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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ŵh
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ε→0
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ŵh

(b)

Figure 3. Schematic diagrams of an arbitrary element K and a regularized test function wεh defined over it.
(a) The element K is further divided into two sub-domains Ko and Kε. (b) The test function wεh is defined
piecewise as follows: w̃h over Ko, τh over Kε, ŵh on ∂K and with w̃h|∂Ko

= τh|∂Ko
. The regularization

parameter ε characterizes the width of the Kε domain and taking the limit ε→ 0 we recover the generalized
function wh

be written in the following equivalent forms.
∫

Ω

∇wεh ·∇φh dΩ =
∑

K

[∫

Ko

∇w̃h ·∇φh dΩ +

∫

Kε

∇τh ·∇φh dΩ

]
(29a)

=
∑

K

[∫

Ko

∇w̃h ·∇φh dΩ−
∫

Kε

τh∆φh dΩ−
∫

∂Ko

w̃hn
o+ ·∇φh dΓ +

∫

∂K

ŵhn ·∇φh dΓ

]

(29b)

=
∑

K

[
−
∫

Ko

w̃h∆φh dΩ−
∫

Kε

τh∆φh dΩ +

∫

∂K

ŵhn ·∇φh dΓ

]
(29c)

Equations (29b) and (29c) result from integrating by parts the corresponding terms in Equation
(29a) and using the relations in Equation (28). Taking the limit ε→ 0 on both sides of Equation (29)
we get,

∫

Ω

∇wh ·∇φh dΩ =

∫

Th
∇w̃h ·∇φh dΩ + lim

ε→0

∑

K

∫

Kε

∇τh ·∇φh dΩ (30a)

=

∫

Th
∇w̃h ·∇φh dΩ +

∑

K

∫

∂K

(ŵh − w̃h)n ·∇φh dΓ (30b)

= −
∫

Th
w̃h∆φh dΩ +

∑

K

∫

∂K

ŵhn ·∇φh dΓ (30c)

where
∫
Th represents the piecewise integral

∑
K

∫
K

. Note that the integral
∫
Kε

that appears in
Equation (30a) does not vanish as ε→ 0. On the other hand, using the form expressed in Equation
(30b) the extra labor just involves the evaluation of the element boundary integrals. This can be
easily incorporated within an ‘assemble-by-elements’ data structure. Hence for the implementation
of the PG method, we use Equation (30b) to compute the bilinear form in Equation (26).

B(wh, φh) :=

∫

Th
∇w̃h ·∇φh dΩ +

∑

K

∫

∂K

(ŵh − w̃h)n ·∇φh dΓ

−
∫

Th
ξ2
ow̃hφh dΩ−

∫

ΓR

ŵhMφh dΓ

(31)

We get the discrete system matrix by making the approximations φh = NaΦa, wh = W aΨa and
substituting it into Equation (31). Note that the approximation wh = W aΨa implies w̃h = W̃ aΨa

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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10 P. NADUKANDI, E. OÑATE AND J. GARCIA

and ŵh = Ŵ aΨa. However, to remark on the sparsity pattern of the discrete system, it is more
appropriate to express the bilinear form in Equation (26) using Equation (30c). Following this line,
the discrete system matrix A can be expressed as follows:

Aab = −
∫

Th
W̃ a∆N b dΩ +

∑

K

∫

∂K

Ŵ an ·∇N b dΓ−
∫

Th
ξ2
oW̃

aN b dΩ−
∫

ΓR

Ŵ aMN b dΓ

(32)
Recall that by construction, supp(W̃ a) is the interior of the elements of a patch containing the

node a. Further, if Ŵ a be designed such that supp(Ŵ a) = supp(Na|Eh), then from Equation (32)
we see that the resulting discrete system A will have a sparsity pattern equivalent to that of the
Galerkin FEM. In other words, to attain the Galerkin FEM sparsity pattern, Ŵ a should be zero
wherever Na be zero.

6. BLOCK FINITE ELEMENTS

In this section we complete the definition of the composite basis functions W a of the test space
given by Equation (23) when the trial spaces are spanned by the lowest order block finite elements.
In other words we define Ŵ a on the element edges for the 1D linear and the 2D bilinear FEs.

6.1. 1D linear FE

Recall that by construction the basis functions W̃ a are defined only in the interior of the elements.
Hence in Figure 1b, open circles were used to indicate that the values taken by W̃ a on the nodes
a− 1, a and a+ 1 are omitted. Let Ŵ a|a−1, Ŵ

a|a and Ŵ a|a+1 be the corresponding function values
assigned to Ŵ a on these edges. For Ŵ a to be a partition of unity on the element edges the following
relation should hold:

Ŵ a|a−1 + Ŵ a|a + Ŵ a|a+1 = 1 (33)

There exists an infinity of solutions for Equation (33) but only the choice
{Ŵ a|a−1, Ŵ

a|a, Ŵ a|a+1} = {0, 1, 0} satisfies the properties given in Equation (24). This
choice will result in a discrete system that has the same sparsity structure as that of the Galerkin
FEM or the classical FDM. Also, the space spanned by these weights can be restricted to zero
on the Dirichlet boundary without being trivially zero inside the domain and thus, justifying their
admittance in weak formulations. Thus using the 1D linear FE, Equation (24) is satisfied if and
only if Ŵ a is defined as follows.

Ŵ a = Na|Eh (34)

Following Equation (23) and using Equations (21) and (34) the local expression of the composite
basis W a within each element can be expressed as,

W a =





1 + (1 + 2α2)ξξ̄a

2
−1 < ξ < 1

1 + ξξ̄a

2
ξ = ±1

(35)

Choosing α2 = 0 in Equation (35) the composite basisW a simplifies to the standard 1D FE shape
functions Na. Likewise, choosing α2 = 1 the composite basis W a corresponding to the 1D linear
FE can be represented as shown in Figure 4.

Consider the BVP (1) subjected to Dirichlet boundary conditions and let f = 0. Using W a given
by Equation (35) in the weak form of the PG method given by Equation (26), the following equation

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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ξa− 1 a a+ 1
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0.5

1

1.5
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(b)

Figure 4. The composite basis functions Wa corresponding to the 1D linear FE and choosing α2 = 1. The
filled circles in these illustrations represent the chosen model for Ŵa on the element edges. (a) Illustration
of the basis Wa defined locally within an element. (b) The global basis Wa corresponding to an arbitrary

node a patched element-wise.

stencil is obtained:
(

1

`

)
(−Φi−1 + 2Φi − Φi+1)− (1− α2)

(
ξ2
o`

6

)
(Φi−1 + 4Φi + Φi+1)− α2ξ

2
o`Φ

i = 0 (36)

⇒
(1− α2)

[(
1

`

)
(−Φi−1 + 2Φi − Φi+1)−

(
ξ2
o`

6

)
(Φi−1 + 4Φi + Φi+1)

]

+α2

[(
1

`

)
(−Φi−1 + 2Φi − Φi+1)− ξ2

o`Φ
i

]
= 0

(37)

Equation (36) is precisely the stencil obtained from the Galerkin FEM using an alpha-interpolated
mass matrix. For the 1D case using linear FE and as shown in Equation (37), it is equivalent to the
alpha-interpolation of the stencils obtained by the Galerkin FEM and the classical FDM methods .

6.2. 2D bilinear FE

Consider the following definition of Ŵ a defined locally on the edges of the 2D bilinear FE,

Ŵ a =





(
1 + (1 + 2α1)ξξ̄a

2

)(
1 + ηη̄a

2

)
(ξ, η) ∈ (−1, 1)× {±1}

(
1 + ξξ̄a

2

)(
1 + (1 + 2α1)ηη̄a

2

)
(ξ, η) ∈ {±1} × (−1, 1)

(
1 + ξξ̄a

2

)(
1 + ηη̄a

2

)
(ξ, η) ∈ {±1} × {±1}

(38)

One can arrive at the above definition by taking the Cartesian product of the 1D counterparts of
W a defined earlier in Equation (35) and then replacing the parameter α2 therein by α1. Clearly the
functions Ŵ a defined via Equation (38) are a partition of unity. Likewise, on the edges whenever
the expression for α1 is single-valued, we have simultaneously a single-valued model for Ŵ a.
Thus, should any length scale appear within the expression for α1, then it should be proportional
to the corresponding edge length. Note that on the element edges wherever Na = 0, we have
simultaneously Ŵ a = 0. In this way it is possible to retain the sparsity pattern of the Galerkin
FEM.

Consider the discrete diffusion term
∫

Ω
∇W a ·∇N b dΩ calculated using a structured mesh in

2D made up of rectangular bilinear FEs. As the Laplacian of the shape functions N b is zero in

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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the interior of a rectangular bilinear FE, we use the form given in Equation (30c) to calculate the
considered diffusion term. Thus,

∫

Ω

∇W a ·∇N b dΩ =
∑

K

∫

∂K

Ŵ an ·∇N b dΓ (39a)

∫

∂K

Ŵ an ·∇N b dΓ =
`2
6`1




(2 + α1) −(2 + α1) −(1− α1) (1− α1)
−(2 + α1) (2 + α1) (1− α1) −(1− α1)
−(1− α1) (1− α1) (2 + α1) −(2 + α1)

(1− α1) −(1− α1) −(2 + α1) (2 + α1)




+
`1
6`2




(2 + α1) (1− α1) −(1− α1) −(2 + α1)
(1− α1) (2 + α1) −(2 + α1) −(1− α1)
−(1− α1) −(2 + α1) (2 + α1) (1− α1)
−(2 + α1) −(1− α1) (1− α1) (2 + α1)




(39b)

The stencil coefficient matrix Sd corresponding to the assembly of the element matrices given by
Equation (39b) can be expressed as follows:

Sd :=
`2
6`1
{(1− α1), (4 + 2α1), (1− α1)}t {−1, 2,−1}

+
`1
6`2
{−1, 2,−1}t {(1− α1), (4 + 2α1), (1− α1)}

(40a)

⇒ Sd := (1− α1)
`2
6`1
{1, 4, 1}t {−1, 2,−1}+ α1

`2
6`1
{0, 6, 0}t {−1, 2,−1}

+ (1− α1)
`1
6`2
{−1, 2,−1}t {1, 4, 1}+ α1

`1
6`2
{−1, 2,−1}t {0, 6, 0}

(40b)

Equation (40b) is precisely the linear interpolation (specified by α1) of the diffusion terms
obtained by using the Galerkin FEM and classical FDM stencils in 2D, cf. Equation (12). Unlike in
1D where we had a unique way to model Ŵ a so as to retain the sparsity pattern of the Galerkin-
FEM, in 2D many alternatives models exist. However, all acceptable models for Ŵ a have to be a
partition of unity for every element and be single-valued on the element edges.

Following Equation (23) and using Equations (21) and (38) the local expression of the composite
basis W a within each element can be expressed as,

W a =





WabN b (ξ, η) ∈ (−1, 1)× (−1, 1)

(1 + (1 + 2α1)ξξ̄a

2

)(1 + ηη̄a

2

)
(ξ, η) ∈ (−1, 1)× {±1}

(1 + ξξ̄a

2

)(1 + (1 + 2α1)ηη̄a

2

)
(ξ, η) ∈ {±1} × (−1, 1)

(1 + ξξ̄a

2

)(1 + ηη̄a

2

)
(ξ, η) ∈ {±1} × {±1}

(41)

where W is the matrix of constant coefficients given by Equation (20). Recall that the matrix
W involves the parameter α2 in its definition. Note that on structured 2D meshes using the basis
W a given by Equation (41), the PG method defined in Equation (26) will yield the nonstandard
compact stencil summarized in Equation (12). This observation follows by using the results given
in Equations (25), (39) and (40) in the discrete system matrix given in Equation (32).

6.3. Stabilization parameters on unstructured meshes

As most of the expressions for α1, α2 optimized for square meshes need not be optimal for
unstructured meshes, in the current work we consider only the simplest expressions that would
guarantee fourth-order (cf. Equation (42a)) and sixth-order (cf. Equation (42b)) dispersion accuracy
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ℓ2
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(b)

Figure 5. Stencils obtained by using a structured simplicial finite element mesh with the hypotenuse
oriented/tilted along (a) left, i. e. o = l and (b) right , i. e. o = r. The flag ‘o’ indicates the stencil tilt.

on square meshes. On unstructured meshes the expressions for α1, α2 corresponding to these two
choices can be written as follows:

α1 = α2 =
1

2
(42a)

α1 =
1

2
− ω̂

60
; α2 =

1

2
− ω̃

40
(42b)

where ω̂ := (ξồ)2 and ω̃ := (ξo˜̀)2. ̂̀ and ˜̀ represent the models used for the length measures
corresponding to the element edges and the interior, respectively. In the current study for each
element we have chosen ̂̀ equal to the edge length (will vary from edge to edge) and ˜̀ equal to
the maximum edge length. Note that using this model, α1 is always single-valued on the edges. On
square meshes using Equation (42b) we recover α1, α2 as given in Equation (13) up to the first two
terms which is sufficient to attain sixth-order dispersion accuracy.

7. SIMPLICIAL FINITE ELEMENTS

Consider a rectangular domain discretized by structured simplicial FEs. Such discretization would
typically yield stencils as shown in Figure 5. The stencils with the hypotenuse oriented along left
and right are labeled using the markers o = l and o = r respectively. The flag ‘o’ indicates the stencil
tilt.

The equation stencil for the Galerkin FEM corresponding to any interior node (i, j) can be written
as Equation (7) with the following definition of stencil coefficient matrix:

Sfem =
`2
`1




0 0 0
−1 2 −1
0 0 0


+

`1
`2




0 −1 0
0 2 0
0 −1 0


− ξ2

o`1`2
12



δol 1 δor
1 6 1
δor 1 δol


 (43)

where δol and δor are Kronecker deltas. Note that using simplicial FEs the contribution of the
diffusion term in Equation (43) is identical to that obtained in the FDM stencil given by Equation
(11). Thus, the stencil obtained via an α-interpolation of the Galerkin FEM and the FDM stencils
will lead to the following stencil coefficient matrix:

Sα =
`2
`1




0 0 0
−1 2 −1
0 0 0


+

`1
`2




0 −1 0
0 2 0
0 −1 0


− ξ2

o`1`2
12




(1− α)δol (1− α) (1− α)δor
(1− α) 6(1 + α) (1− α)

(1− α)δor (1− α) (1− α)δol




(44)
We see that using simplicial FEs in 2D, the α-interpolation of Galerkin FEM and FDM is

equivalent to the alpha-interpolation method (AIM) [4, 5]. In the AIM, the consistent mass matrix
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M that appears in the Galerkin FEM is replaced by the α-interpolated mass matrix Mα := (1−
α)M + αML. Consider the following definition for the composite basis W a when using simplicial
FEs,

W a =

{
W̃ a := WabN b in the element interior
Ŵ a := Na on the element edges

(45)

Consider the BVP (1) posed on an interior 2D domain subjected to Dirichlet boundary conditions
and let f(x) = 0. Using the basis W a given by Equation (45) in the PG method defined in Equation
(26), we recover the AIM. In particular for the structured simplicial FE meshes shown in Figure 5,
we recover the stencil given in Equation (44). We can guess that a solution to any generic stencil
takes the form Φi,j := φ(xi1, x

j
2) = exp[i(ξh1xi1 + ξh2x

j
2)]. Substituting this solution into the stencil

formed by Sα given in Equation (44) and defining λ1 := exp(iξh1 `1) and λ2 := exp(iξh2 `2) we get
the characteristic equation as follows:

[2− λ1 − λ−1
1 ]

ω1
+

[2− λ2 − λ−1
2 ]

ω2
=

(1 + α)

2
+

(1− α)

12

(
λ1 + λ−1

1 + λ2 + λ−1
2

)

+
(1− α)

12

(
δol[λ1λ

−1
2 + λ−1

1 λ2] + δor[λ1λ2 + λ−1
1 λ−1

2 ]
)

(46)

where, ω1 := (ξo`1)2 and ω2 := (ξo`2)2. For the dispersion analysis of Sα given in Equation (44)
we restrict to the case `1 = `2 = `. In this case, the stencil coefficient matrix Sα simplifies to,

Sα =



δolS2 S1 δorS2

S1 S0 S1

δorS2 S1 δolS2


 ;

S0 := 4− (1 + α)(ω/2)

S1 := −1− (1− α)(ω/12)

S2 := −(1− α)(ω/12)

(47)

where, ω := (ξo`)
2. The characteristic equation given in Equation (46) now gets simplified to the

following:
S0 + 2S1[cos(ξh1 `) + cos(ξh2 `)] + 2S2 cos(ξh1 `± ξh2 `) = 0 (48)

The ‘±’ that appears in the above equation corresponds to the cases o = r and o = l respectively
(see Figure 5). The parameter α may be expressed as a generic series expansion in terms of ω as
follows:

α :=

∞∑

m=0

amω
m ≈ a0 + a1ω + a2ω

2 + a3ω
3 +O

(
ω4
)

(49)

where am, bm are coefficients independent of ω. Following the approach used in [1] which was
originally presented in [11], the relative phase error (P) and local truncation error (T) along any
direction β can be written as,

P = r1ω +O
(
ω2
)

; T = −2r1ω +O
(
ω2
)

(50)

r1 :=
(a0 − 1)

24
[2± sin(2β)] +

[
3 + cos(4β)

96

]
(51)

Clearly it is impossible to obtain the condition r1 = 0 by a choice of the coefficient a0 that is
independent of the angle β. Thus, unlike for the structured bilinear block FEs, for the structured
simplicial FEs shown in Figure 5, the pollution is essentially of the same order as for those of the
Galerkin FEM, the FDM and the GLS-FEM [17, 18]. Nevertheless, just like for the GLS-FEM, the
coefficient a0 can be chosen so as to arrive at a higher-order modification of the interior stencil of
the Galerkin FEM. Similar studies for eigenvalue problems using the AIM with simplicial FEs was
done in [4, 5, 19, 20].

Remark: Following the approach taken for bilinear block FEs, it is possible to provide different
models for the PG weights on the elements edges. This idea will be explored in future works.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
Prepared using nmeauth.cls DOI: 10.1002/nme



A PETROV–GALERKIN FORMULATION 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 6. Meshes made of bilinear block-FEs. (a) Uniform mesh, δ = 0. (b) Nonuniform mesh, δ = 0.2.

8. EXAMPLES

In this section we present some examples in 2D for the problem defined by Equation (1) and
considering the following problem data: the wavenumber ξo ∈ {50, 100}, the source f = 0, the
direction of wave propagation β = (π/9) and the domain Ω = [0, 1]× [0, 1]. The domain Ω is
discretized by considering both uniform and nonuniform meshes made up of just the bilinear block
FEs. The nonuniform meshes are obtained by randomly perturbing the interior nodes of uniform
meshes with coordinates (xi, yi) as follows [21, 22]:

x
′

i = xi + `1δ rand() ; y
′

i = yi + `2δ rand() (52)

where, (x
′

i, y
′

i) represent the corresponding coordinates of the uniform mesh, δ is a mesh distortion
parameter and rand() is a function that returns random numbers uniformly distributed in the interval
[−1, 1]. Figure 6 illustrates an instance of an unstructured mesh obtained by this procedure using a
50× 50 square mesh and the parameter δ = 0.2.

We consider the following four cases concerned with the choice of the stabilization parameters
α1, α2:

I: α1 = α2 = 0. This case corresponds to the Galerkin FEM.

II: α1 = α2 = 1. This case on rectangular meshes corresponds to the classical FDM. We denote
this case as FDM/PG as it is obtained within a Petrov–Galerkin framework. FDM/PG is a
straight-forward extension of the FDM to unstructured meshes.

III: α1 = α2 = (1/2). This case corresponds to a discrete system that is equivalent to the average
of the Galerkin FEM and the FDM/PG. On rectangular meshes we obtain the stencil associated
with (Sfem + Sfdm)/2, which is equivalent to the one obtained using the generalized Padé
approximation in 2D [6, 7]. The dispersion accuracy on square meshes is of fourth-order.

IV: α1 6= α2 6= 0 and given by Equation (42b). On rectangular meshes this case yields the
nonstandard compact stencil presented in [1] and summarized in Equation (12). Recall that on
square meshes these expressions for the parameters α1, α2, guarantee sixth-order dispersion
accuracy.
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For these considerations we study the convergence of the relative error in the following norms:

L2 norm
‖φ− φh‖0
‖φ‖0

:=
[
∫

Ω
|φ− φh|2 dΩ]1/2

[
∫

Ω
|φ|2 dΩ]1/2

(53a)

H1 semi-norm
‖φ− φh‖1
‖φ‖1

:=
[
∫

Ω
|∇(φ− φh)|2 dΩ]1/2

[
∫

Ω
|∇φ|2 dΩ]1/2

(53b)

l∞ Euclidean norm
|Φe − Φh|∞
|Φe|∞

:=
maxi |Φie − Φih|

maxi |Φie|
(53c)

where Φe is the exact solution sampled at the nodes of the mesh. In the convergence studies
done here, the numerical solutions corresponding to the four cases viz. I-IV, are compared with the
following solutions: the nodally exact FE interpolant denoted by Ihφ and the best approximations
with respect to the L2 norm and the H1 semi-norm denoted by P 0

hφ and P 1
hφ respectively. The

solutions Ihφ, P 0
hφ and P 1

hφ can be found as shown in Equation (54).

Ihφ := NaΦae (54a)∫

Ω

wh(φ− P 0
hφ) dΩ = 0 ∀ wh ∈ Uh0 ⇒ ‖ φ− P 0

hφ ‖0 ≤ ‖ φ− φh ‖0 ∀ φh ∈ U
h
E (54b)

∫

Ω

∇wh ·∇(φ− P 1
hφ) dΩ = 0 ∀ wh ∈ Uh0 ⇒ ‖ φ− P 1

hφ ‖1 ≤ ‖ φ− φh ‖1 ∀ φh ∈ U
h
E (54c)

As the exact solution φ is sinusoidal, we have used a third-order Gauss quadrature rule to evaluate
the expressions involving φ in Equation (53) and Equation (54).

8.1. Example 1: Dirichlet boundary conditions

In this example, only the Dirichlet boundary conditions are prescribed such that the exact solution
is φ(x) = sin(ξβ · x), where ξβ := ξo(cos(β), sin(β)). Uniform meshes with n× n square elements
are considered with n given by the following expression.

n = ceil(50× 2m/8) ; m ∈ {0, 1, 2, . . . 28} (55)

where ceil(m) is a function that returns the nearest integer greater than or equal tom. Nonuniform
meshes are obtained corresponding to each uniform mesh using the procedure described earlier. For
these considerations we present the plots of the relative error vs. the mesh-size.

Figure 7 illustrates the convergence of the relative error in the L2 norm. Clearly the error lines
of the considered solutions are bounded from below by the error line of P 0

hφ (L2-BA) and show
a tendency to become parallel to the error line of P 0

hφ as `→ 0. Figures 7a and 7b show the L2

error considering ξo = 50 and for uniform (δ = 0) and nonuniform (δ = 0.2) meshes respectively.
As expected the error lines corresponding to cases I and II differs substantially from those of Ihφ,
P 0
hφ and P 1

hφ. The error lines corresponding to cases III and IV are very close to that of Ihφ. As the
solution in case IV has sixth-order dispersion accuracy on square meshes it is almost the same as
Ihφ. On nonuniform meshes the quality of the solution in case IV deteriorates and is similar to that
of case III. Figures 7c and 7d show the error lines considering ξo = 100 and for the choices δ = 0 and
δ = 0.2 respectively. As expected all the error lines corresponding to cases I-IV deviate further from
the error lines of Ihφ, P 0

hφ and P 1
hφ (the pollution effect). On square meshes the solution of case

IV shows the least deviation and is practically identical to Ihφ (Figure 7c). The pollution associated
with the solution of case III is similar to that of cases I and II on coarse meshes but it diminishes
rapidly on further mesh refinement. Again, on nonuniform meshes the quality of the solution in
case IV deteriorates showing an appreciable deviation from the error lines of Ihφ, P 0

hφ and P 1
hφ

and is similar to that of case III (Figure 7d). A distinctive feature in these plots is the formation of
spikes in the error lines. Their presence is more evident for higher wavenumbers and on nonuniform
meshes where the dispersion errors are relatively higher. As here we have prescribed only the
Dirichlet boundary conditions the numerical solutions might suffer spurious amplitude and/or phase
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modulations to satisfy them [17]. Encounters with zones of degeneracy (wherein the solution might
blow up) also contributes to huge errors in the amplitude [1, 17, 23]. Fortunately, these spurious
modulations reduce should other choices for the boundary conditions be employed viz. an exterior
problem with DtN boundary conditions [17], an interior problem with Robin boundary conditions
[11].

Figure 8 illustrates the convergence of the relative error in the H1 semi-norm. Clearly the error
lines of the considered solutions are bounded from below by the error line of P 1

hφ (H1-BA). Unlike
the errors measured in the L2 norm, the errors measured in the H1 semi-norm show a tendency to
merge with the error line of P 1

hφ. Figures 8a and 8b (ξo = 50) show that the error lines of case III
and IV are practically the same as of Ihφ, P 0

hφ and P 1
hφ. Figures 8c and 8d (ξo = 100) show that the

deviations of the error lines of cases III and IV from the error line of P 1
hφ even though they exist, it

is smaller than that observed using the L2 norm.
Figure 9 illustrates the convergence of the relative error in the l∞ Euclidean norm which is a

measure of nodal exactness. Figures 9a and 9c show that on unifrom meshes (δ = 0) the error lines
of case III and IV converge at a rate of fourth and sixth order respectively. Figures 9b and 9d show
that on nonuniform meshes (δ = 0.2) the higher order accuracy of case IV deteriorates and has a
trend similar to that of case III. Also, in an average sense both the cases III and IV have second-
order convergence rate similar to P 0

hφ and P 1
hφ. For the wavenumber ξo = 50 the errors found for

the cases III and IV are similar to that of P 0
hφ (Figure 9b).

8.2. Example 2: Robin boundary conditions

In this example, only the Robin boundary conditions are prescribed such that the exact solution
is φ(x) = exp(iξβ · x), where ξβ := ξo(cos(β), sin(β)). The operator M that appears in Equation
(1c) is chosen asM := iξo. Thus, q(x) := i(n · ξβ − ξo) exp(iξβ · x). Uniform meshes with n× n
square elements are considered with n given by the following expression.

n = ceil(
mξo
2π

) ; m ∈ {10, 10.5, 11, 11.5, . . . 25} (56)

Choosing n by the above expression guarantees the presence of at least m elements per
wavelength. Nonuniform meshes are obtained corresponding to each uniform mesh using the
procedure described earlier. For these considerations, we present the plots of the relative error vs.
ξ∗, where ξ∗ := (ξo`/π). The choice of ξ∗ as the abscissa in the plots allows us to single out the
pollution effect.

Figures 10, 11 and 12 illustrate the convergence of the relative error in the L2 norm, the H1 semi-
norm and the l∞ Euclidean norm respectively. Clearly, all the spurious modulations that appeared
in the error lines considering only the Dirichlet boundary conditions (Figures 7, 8 and 9) diminish
when the Robin boundary conditions are prescribed. Also, in all the Figures (10, 11 and 12) by
freezing the value of δ and increasing the value of ξo we observe the following trait. The location of
the error lines of Ihφ, P 0

hφ and P 1
hφ is practically unaffected by an increase in ξo (no pollution). As

expected the error lines of cases I and II not only are located high above the error lines of Ihφ, P 0
hφ

and P 1
hφ but also shift higher with an increase in ξo (pollution effect).

On uniform meshes (δ = 0) the error lines of cases III and IV not only are located close to the
respective best approximations but also show negligible upward shift with an increase in ξo (small
pollution). Clearly, on uniform meshes the performance of case IV is relatively better than that of
case III (although the difference is small). The pollution effect is more visible for these cases on
nonuniform meshes (δ = 0.2). In the L2 norm the error lines of cases III and IV show an accuracy at
par with Ihφ and P 1

hφ (Figures 10c and 10d). In theH1 semi-norm the error lines of cases III and IV
are practically the same as those corresponding to Ihφ, P 0

hφ and P 1
hφ (Figures 11c and 11d). In the

l∞ Euclidean norm the error lines of cases III and IV are close to the error line of P 0
hφ (Figures 12c

and 12d). Further, in Figure 12 note that in an average sense all the error lines have second-order
convergence rate in the l∞ Euclidean norm. This result is due to the error in the approximation of
the Robin boundary condition. Thus, unlike in Figure 9 wherein the error lines of cases III and IV
showed fourth-order and sixth-order convergence rates respectively, here it drops to second-order.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
Prepared using nmeauth.cls DOI: 10.1002/nme



18 P. NADUKANDI, E. OÑATE AND J. GARCIA
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Figure 7. Convergence of the relative error in the L2 norm using β = (π/9) and Dirichlet boundary
conditions. The wavenumber ξo and the mesh distortion parameter used are: (a) ξo = 50, δ = 0 ; (b) ξo = 50,

δ = 0.2 ; (c) ξo = 100, δ = 0 and (d) ξo = 100, δ = 0.2.

9. CONCLUSIONS

A new Petrov–Galerkin (PG) method involving two parameters viz. α1, α2 is presented which yields
the following schemes on rectangular meshes: a) a compact stencil obtained by the α-interpolation
of the Galerkin FEM and the classical central FDM, should the two parameters be made equal, i. e.
α1 = α2 = α and b) the nonstandard compact stencil presented in [1] for the Helmholtz equation
if the parameters are distinct, i. e. α1 6= α2. On square meshes, these two schemes were shown to
provide solutions to the Helmholtz equation that have a dispersion accuracy of fourth and sixth
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Figure 8. Convergence of the relative error in the H1 semi-norm using β = (π/9) and Dirichlet boundary
conditions. The wavenumber ξo and the mesh distortion parameter used are: (a) ξo = 50, δ = 0 ; (b) ξo = 50,

δ = 0.2 ; (c) ξo = 100, δ = 0 and (d) ξo = 100, δ = 0.2.

order respectively [1]. Thus, this Petrov–Galerkin method yields in a straight-forward manner the
counterparts of these two schemes on unstructured meshes.

The salient features of this new PG method include the following. The solution space is
discretized by standard C0-continuous finite elements. The test functions/weights are piecewise
polynomials of the same degree as the FE shape functions and are generally discontinuous at the
inter-element boundaries. Models for the weights on the inter-element boundaries are provided
such that the sparsity pattern is the same as that for the Galerkin FEM. The parameters α1, α2

determine the shape of the weights on the element edges and the interiors, respectively. The choice
α1 = α2 = 0 yield weights that are identical to the FE shape functions and hence we recover the
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Figure 9. Convergence of the relative error in the l∞ Euclidean norm using β = (π/9) and Dirichlet
boundary conditions. The wavenumber ξo and the mesh distortion parameter used are: (a) ξo = 50, δ = 0 ;

(b) ξo = 50, δ = 0.2 ; (c) ξo = 100, δ = 0 and (d) ξo = 100, δ = 0.2.

Galekin FEM. The weights are a partition of unity only in the sense that they add up to unity. As the
row lumping technique for the FEM mass matrices is a critical step in the design of these weights (to
fulfill the partition of unity constraint), the current PG method is restricted only to those FEs where
this technique makes sense, i. e. linear interpolation on simplices and multilinear interpolation on
blocks.

The α-interpolation of FEM and FDM on a rectangular domain discretized by structured
simplicial FE mesh would yield a scheme identical to the alpha-interpolation method (AIM) [4, 5]
wherein the mass matrix that appears in the Galerkin FEM is replaced by an α-interpolated mass
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Figure 10. Convergence of the relative error in the L2 norm using β = (π/9) and Robin boundary conditions.
The wavenumber ξo and the mesh distortion parameter used are: (a) ξo = 50, δ = 0 ; (b) ξo = 100, δ = 0 ;

(c) ξo = 50, δ = 0.2 and (d) ξo = 100, δ = 0.2.

matrix. In the current PG method we recover the AIM (even on unstructured simplicial meshes)
by making the choice Ŵ a = Na|Eh . Unfortunately in this case the dispersion accuracy drops to
second-order.

Recall that on square meshes many existing higher-order compact schemes (including the
QSFEM [11]) can be recovered by an appropriate choice of the parameters α1, α2 [1]. As
most of the expressions for α1, α2 optimized for square meshes need not be optimal for
unstructured meshes in the presented examples we have considered only the simplest expressions
that would guarantee fourth-order (choosing α1 = α2 = (1/2)) and sixth-order (α1, α2 given by
Equation (42b)) dispersion accuracy on square meshes. Convergence studies of the solution error
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Figure 11. Convergence of the relative error in the H1 semi-norm using β = (π/9) and Robin boundary
conditions. The wavenumber ξo and the mesh distortion parameter used are: (a) ξo = 50, δ = 0 ; (b)

ξo = 100, δ = 0 ; (c) ξo = 50, δ = 0.2 and (d) ξo = 100, δ = 0.2.

corresponding to these two choices are done to quantify the pollution effect and comparisons are
made with respect to the errors of the Galekin FEM, the nodally exact FE interpolant and the best
approximations in the L2 norm and the H1 semi-norm respectively. Both the Dirichlet and Robin
boundary conditions were considered in the examples. The wavenumbers ξo = 50 and ξo = 100
were chosen to represent values in the mid-frequency and high-frequency range respectively.

For the Dirichlet problem, the results on square meshes verify the higher-order dispersion
accuracy and the low pollution effect. However on nonuniform meshes the dispersion accuracy
of the current PG method drops down to second-order (verified by the errors in the l∞ Euclidean
norm). Also, the performance of both the choices for the parameters α1, α2 is similar on nonuniform
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Figure 12. Convergence of the relative error in the l∞ Euclidean norm using β = (π/9) and Robin boundary
conditions. The wavenumber ξo and the mesh distortion parameter used are: (a) ξo = 50, δ = 0 ; (b)

ξo = 100, δ = 0 ; (c) ξo = 50, δ = 0.2 and (d) ξo = 100, δ = 0.2.

meshes. For the mid-frequency range, i. e. ξo = 50 the errors in the l∞ Euclidean norm for
both the parameter choices is close to the error of the best approximation in the L2 norm. In
the high-frequency range, i. e. ξo = 100, the improvement with respect to the Galerkin FEM is
significant. However, the solutions exhibit spurious modulations indicating that there is still room
for improvement.

For the Robin problem, these spurious modulations in the solutions cease to exist. The pollution
effect on square meshes is greatly reduced and on nonuniform meshes it is small. Also, the location
of the error lines of the current PG method is in between the error lines of pollution-free solutions,
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viz. the nodally exact FE interpolant and the best approximations in the L2 norm and the H1 semi-
norm, thus indicating high accuracy.

The additional cost of implementation of the current PG method is just the evaluation of the
element boundary integrals, cf. Equation (31). All the algebraic evaluations are done at the element
level unlike the QOPG method [21] where it is done at the patch level. This feature allows the current
PG method to be easily incorporated within an ‘assemble-by-elements’ data structure. The choice
of the parameters α1 = α2 = (1/2) render the current PG method independent of the problem and
mesh data. In this sense and for this choice, the current PG method could be labeled ‘parameter-
free’.
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