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SUMMARY

We present a collection of stabilized finite element (FE) methods derived via first and second order finite
calculus (FIC) procedures. It is shown that several well known existing stabilized FE methods such as
the penalty technique, the Galerkin Least Square (GLS) method, the Pressure Gradient Projection (PGP)
method and the orthogonal sub-scales (OSS) method are recovered from the general residual-based FIC
stabilized form. A new family of stabilized Pressure-Laplacian Stabilization (PLS) FE methods with
consistent nonlinear forms of the stabilization parameters are derived. The distinct feature of the family
of PLS methods is that they are residual-based, i.e. the stabilization terms depend on the discrete residuals
of the momentum and/or the incompressibility equations. The advantages and disadvantages of the different
stabilization techniques are discussed and several examples of application are presented. Copyright c⃝ 0000
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many stabilization procedures for solving incompressible problems in fluid mechanics using the
finite element method (FEM) have been proposed [1]–[28]. Earlier procedures were based on the
so-called penalty approach. This method assumes a pseudo-compressible behaviour for the flow
with a relationship between the volumetric strain rate εv and the pressure p expressed as [1, 2]

εv =
1

α
p (1)

where α is a large number playing the role of an “artificial” bulk parameter for the fluid. Clearly
for α → ∞ the full incompressibility condition εv → 0 is recovered. Another family of stabilized
methods added to the standard incompressibility equation (either in the strong form or in the
variational expression) a Laplacian of pressure term scaled by a stabilization coefficient depending
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on physical parameters and the time step increment. Some of these stabilization methods are
described in [1, 2]. A similar stabilization procedure adds to the variational equation a local L2

polynomial pressure projection multiplied by the inverse of the kinematic viscosity [19]. These
approaches are inconsistent since the stabilization term does not vanish for the exact solution, which
can lead to errors in the pressure distribution and in the conservation of the total volume for some
problems. An improved stabilization technique adds to the incompressibility condition a term that is
a function of the discretized momentum equations, thus ensuring consistency. A popular procedure
of this kind is the Galerkin Least Square (GLS) method [4, 8]. In the GLS procedure the stabilized
variational expression for the incompressibility equation has the following form∫

Ω

qεvdΩ−
∫
Ω

τ(∇∇∇∇∇∇∇∇∇∇∇∇∇∇T q)r̄mdΩ+ boundary terms = 0 (2)

where Ω is the analysis domain, q are test functions, ∇∇∇∇∇∇∇∇∇∇∇∇∇∇ is the gradient operator, τ is a stabilization
parameter and r̄m is a vector containing the discrete residuals of the momentum equations written
as rm = 0. The boundary terms in Eq.(2) are added to ensure the consistency of the method [8]. The
GLS method is an efficient and accurate stabilization procedure for incompressible flows provided
the boundary terms are properly accounted for in Eq.(2).

Another residual-based stabilization technique is the so-called pressure-gradient projection
(PGP) stabilization [15, 16]). In the PGP method, pressure gradients are projected onto a
continuous field and the difference between the actual gradients and their own projections
generates the stabilization terms. This is equivalent to replacing the variational expression for the
incompressibility equation by the following equation∫

Ω

qεvdΩ−
∫
Ω

τ(∇∇∇∇∇∇∇∇∇∇∇∇∇∇T q)(∇∇∇∇∇∇∇∇∇∇∇∇∇∇p+ ππππππππππππππ) = 0 (3)

where ππππππππππππππ is a continuous function (termed the pressure-gradient projection vector) obtained by
projecting the pressure gradient ∇∇∇∇∇∇∇∇∇∇∇∇∇∇p on the velocity field, and τ is a stabilization parameter.

The term (∇∇∇∇∇∇∇∇∇∇∇∇∇∇p+ ππππππππππππππ) in Eq.(3) can be interpreted as a residual term if we write the momentum
equations as rm =∇∇∇∇∇∇∇∇∇∇∇∇∇∇p+ ππππππππππππππ. The total number of discrete unknowns is increased by the ππππππππππππππ field,
which is discretized via pressure shape functions. For completeness, the set of governing equations
is extended with additional equations requiring the vanishing of the sum (∇∇∇∇∇∇∇∇∇∇∇∇∇∇p+ ππππππππππππππ) in a weighted
residual sense. This provides the equations for computing the ππππππππππππππ variables.

A variant of the PGP technique is the orthogonal sub-scales (OSS) method [17, 20, 21]. The
variational expression for the incompressibility constraint is written in the OSS method as∫

Ω

qεvdΩ−
∫
Ω

τ(∇∇∇∇∇∇∇∇∇∇∇∇∇∇T q)(r̄m + ππππππππππππππ)dΩ = 0 (4)

where r̄m is the discrete residual of the momentum equations and ππππππππππππππ are additional variables
that are now interpreted as the projection of the momentum residuals into the velocity space
(without boundary conditions). The term r̄m + ππππππππππππππ represents an enhanced approximation to the exact
momentum residuals rm. Consistency is preserved by enforcing that the sum r̄m + ππππππππππππππ vanishes in a
weighted residual sense. This also provides the closure equations for computing the ππππππππππππππ variables.

PGP and OSS stabilization methods are useful for homogeneous flows lacking free-surfaces but
encounter difficulties to satisfy incompressibility for fluids with heterogeneous (and discontinous)
physical properties [39, 44, 45] and, in some cases, for free-surface flows when pressure segregation
techniques are used for solving the Navier-Stokes equations. Furthermore, PGP and OSS methods
increase the number of problem variables (u, p and ππππππππππππππ) as well as the connectivity (bandwidth) of the
stabilization matrices to be solved.

The stabilization parameter τ in the GLS, PGP and OSS methods is typically chosen as a function
of the viscosity and the mesh size [1]–[28]. However, the optimal definition of the stabilization
parameter is still a challenge in these methods.

In a recent work we have presented a Pressure Laplacian Stabilization (PLS) method [46],
that adds two stabilization terms to the variational form of the incompressibility equation: (1) a

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
Prepared using fldauth.cls DOI: 10.1002/fld



A FAMILY OF RESIDUAL-BASED STABILIZED FINITE ELEMENT METHODS 3

pressure Laplacian, and (2) a boundary integral. Both terms are multiplied by residual dependent
stabilization parameters which emerge naturally from the formulation. Consistency is preserved
since the stabilization parameters vanish for the exact solution. The Laplace matrix and the boundary
matrix are computed at element level. Because pressure gradient continuity is not enforced, as
it happens, for instance, in standard PGP methods, the treatment of heterogeneous multi-fluid
problems, such as mixing, is facilitated.

Inclusion of the boundary term in the PLS method also sidesteps the need for prescribing known
boundary pressure values when a segregated solution procedure is used. This helps to ensuring the
overall conservation of mass for free surface flows [43].

The aim of the paper is to show that many of the stabilized methods described in the previous
lines, and some new ones, can be derived starting from the modified mass balance equation obtained
via first and second order finite calculus (FIC) procedures. The FIC technique is based on writing
the balance equations in mechanics in a domain of finite size and retaining higher order terms in the
Taylor series expansions used for expressing the derivative field in the vicinity of a fixed point in
the domain. The resulting modified balance equation contains the traditional terms of infinitesimal
theory plus additional terms that depend on the dimensions of the balance domain and the derivatives
of the infinitesimal balance equations [22]. Clearly, as the dimensions of the balance domain tend
to zero the classical balance laws of mechanics are recovered. The interest of the additional terms in
the FIC expressions is that they lead naturally the stabilized numerical schemes (such as stabilized
FEM) in fluid and solid mechanics without the need of introducing additional assumptions [22, 23],
[29]–[37]. The FIC approach therefore is presented here as a parent procedure for deriving a family
of old and new residual-based stabilized methods for analysis of Stokes flows.

An apparent drawback of some of the residual-based stabilized methods presented in this paper is
that the resulting stabilized equation is non linear (due to the residual dependence of the stabilization
parameters) and this requires using an iterative solution scheme. Preliminary results obtained for
simple Stokes flow problems solved with the PLS and PGP methods show that convergence of the
PLS solution is typically found in 2-3 iterations [46]. Also, the non linearity can be easily handled
within a time integration scheme in transient problems, or in practical problems where other non-
linearities might appear due to the presence of convective terms in the momentum equations or
non-linear material behaviour. In the last part of the paper, the performance of the PLS method is
compared with that of the GLS, PLS and OSS techniques for some relatively simple but illustrative
examples of application to Stokes flow problems.

2. GOVERNING EQUATIONS

The equations for an incompressible Stokes flow are expressed in the usual manner as:

Momentum
ρ
Dvi
Dt

− ∂σij

∂xj
− bi = 0 on Ω (5)

Mass balance (incompressibility)

εv :=
∂vi
∂xi

= 0 on Ω , i = 1, 2, 3 (6)

In Eqs.(5) and (6), Ω is the analysis domain with a boundary Γ, vi is the velocity along the ith
coordinate direction, ρ is the density, σij are the Cauchy stresses, bi are the body forces (typically
bi = ρgi where gi is the component of the gravity along the ith direction). In our work we assume
that Dvi

Dt = ∂vi

∂t , i.e. convective derivative terms are neglected, as it is usual in Stokes flows and
Lagrangian descriptions of incompressible continua [32]–[34],[38, 41, 42].

The problem is completed with the boundary conditions for velocities and tractions, i.e.

vi − vpi = 0 on Γu (7a)
σijnj − tpi = 0 on Γt (7b)
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where vpi denote the prescribed velocities on the Dirichlet boundary Γu and tpi are the traction forces
acting on the Neuman boundary Γt, with the normal vector n = [n1, n2, n3]

T (for 3D problems). The
total boundary is Γ := Γu ∪ Γt.

In Eqs.(5)–(7) and in the following, summation convention for repeated indices in products and
derivatives is used unless otherwise specified.

Following standard practice, Cauchy stresses are split into deviatoric and pressure components as

σij = sij + pδij (8)

where sij are deviatoric stresses, p = σii/3 is the pressure (assumed here to be positive if the mean
normal stress is tensile) and δij is the Kroneker delta.

We will also assume the constitutive equations of an isotropic, Newtonian viscous liquid for which
deviatoric stresses are related to deformation rates εij by

sij = 2µ

(
εij −

1

3
εvδij

)
(9a)

where µ is the fluid viscosity and

εij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, εv := εii (9b)

3. INTEGRAL FORM OF THE MOMENTUM EQUATIONS

The weighted residual form of Eqs.(5) and (7) is∫
Ω

wi

[
ρ
∂vi
∂t

− ∂σij

∂xj
− bi

]
dΩ+

∫
Γt

wi(σijnj − tpi )dΓ = 0 (10)

where wi are components of an appropriate test function.
Integrating by parts the term involving σij in Eq.(10) and substituting Eq.(8) into the expression

for σij gives an integral expression of the momentum equations as∫
Ω

[
wiρ

∂vi
∂t

+
∂wi

∂xj
sij +

∂wi

∂xi
p

]
dΩ−

∫
Ω

wibidΩ−
∫
Γt

wit
p
i dΓ = 0 (11)

Eq.(11) is the starting point for the finite element discretization of the momentum equations.

4. STABILIZED FORM OF THE INCOMPRESSIBILITY EQUATION USING FINITE
CALCULUS

The Finite Calculus (FIC) form of the incompressibility equation is obtained by writing the balance
of mass in a finite size domain of dimension h1 × h2 where hi are characteristic length distances.
Higher order Taylor series for expressing the velocity derivative at a reference point in terms of the
velocity derivative at the corners of the balance domain is used[22, 23, 31].

We present next two stabilized forms for the mass balance equation using first and second order
FIC techniques.

4.1. First order FIC form of the incompressibility equation

The first order FIC form for the incompressibility equation is found by writting the balance of mass
in the finite domain of Figure 1a where the velocity field is assumed to vary linearly over each
side. The velocity derivatives at the corner nodes are expressed in terms of the values sampled at
the corners 1 or 3 via Taylor series and retaining the second derivatives of the velocities only. The
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A FAMILY OF RESIDUAL-BASED STABILIZED FINITE ELEMENT METHODS 5

(a) (b)

Figure 1. Rectangular mass balance domain (h1 × h2). (a) Linear distribution of the velocity along the sides.
(b) Parabolic distribution of the velocity along the sides. For simplicity we have defined v1 = u,v2 = v

resulting expression is

εv ±
1

2
hT∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv = 0 (12)

For 2D problems h = [h1, h2]
T . The sign in Eq.(12) is positive or negative depending wether the

sampling point at which velocity derivatives are computed is the corner node 1 or 3 in Figure 1a,
respectively. The sign in Eq.(12) is irrelevant in practice.

The derivation of Eq.(12) can be found in [23].

4.2. Higher order FIC form of the incompressibility equation

A higher order FIC form for the incompressibility equation is obtained by expressing the balance of
mass in the finite domain of Figure 1b in terms of the value of the velocity derivatives sampled at
the center of the domain. Note that the velocity field is now assumed to have a parabolic distribution
along the sides.

The higher order FIC incompressibility equation includes second order derivatives of the
volumetric strain rate only and it is written for 2D problems as

εv +
h2
1

24

∂2εv
∂x2

1

+
h2
2

24

∂2εv
∂x2

2

= 0 (13)

Clearly for the infinitesimal case h1 = h2 = 0 and the standard incompressibility equation (εv =
0) is recovered for both Eqs.(12) and (13).

Eqs.(12) and (13) can be interpreted as non-local mass balance equations incorporating the size
of the domain used to enforce the mass balance condition and space derivatives of the volumetric
strain rate. The FIC mass balance equations can be extended to account for temporal stabilization
terms. These terms, however, are disregarded here as they have not been found to be relevant for the
problems investigated so far.

The derivation of Eq.(13) is shown in [46].
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5. ON THE PROPORTIONALITY BETWEEN THE PRESSURE AND THE VOLUMETRIC
STRAIN RATE

Let us assume a relationship between the pressure and the volumetric strain rate typical for
“compressible” and “quasi-incompressible” fluids, as

1

K
p = εv (14)

where K is the bulk modulus. Clearly for a fully incompressible fluid K = ∞ and εv = 0. For finite,
although very large, values of K the following expression is readily deduced from Eq.(14)

1

K
∇∇∇∇∇∇∇∇∇∇∇∇∇∇p =∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv (15)

where ∇∇∇∇∇∇∇∇∇∇∇∇∇∇ is the gradient operator. For 2D problems, ∇∇∇∇∇∇∇∇∇∇∇∇∇∇ =
[

∂
∂x1

, ∂
∂x2

]T
.

Eq.(15) shows that pressure and volumetric strain rate gradients are co-directional for any K ̸= 0.
We will assume that this property also holds for the full incompressible case (at least for values of K
comfortably representable on the computer without overflow). From Eqs.(14) and (15) we deduce

∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv
|∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv|

=
∇∇∇∇∇∇∇∇∇∇∇∇∇∇p

|∇∇∇∇∇∇∇∇∇∇∇∇∇∇p|
,

1

εv

∂εv
∂xi

=
1

p

∂p

∂xi
(16a)

and hence
∂εv
∂xi

=
εv
p

∂p

∂xi
=

|∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv|
|∇∇∇∇∇∇∇∇∇∇∇∇∇∇p|

∂p

∂xi
(16b)

6. A PENALTY-TYPE STABILIZED FORMULATION

The first order FIC mass balance equation (12) is written as (taking the negative sign)

εv =
hj

2

∂εv
∂xj

(17)

Using Eq.(16b), the FIC term in the r.h.s. of Eq.(17) can be expressed as follows

εv =

(
hj

2

εv
p2

∂p

∂xj

)
p =

1

α
p (18)

where

α =
2p2

hjεv

(
∂p

∂xj

)−1

(19)

is a pressure stabilization parameter [1, 2, 41].
Eq.(18) is equivalent to the so-called penalty formulation (see Eq.(1)) for which the pressure-

volumetric strain rate relationship is expressed as p = αεv where α a penalty parameter that plays
the role of a large “artificial” bulk modulus.

Clearly, α → ∞ for values of εv → 0. However, the full incompressibility condition (εv = 0)
at element level is obtained on rare occasions only. Hence, the form for α of Eq.(19) provides a
consistent (residual-based) definition for the penalty stabilization parameter. Nevertheless, upper
and lower cut-off values for the values for α should be imposed to prevent volumetric locking when
εv or ∂p

∂xi
are equal to zero or the vanishing of α in zones where p is zero [1, 2, 41].

The weighed residual form of Eq.(18) is∫
Ω

q(εv −
1

α
p)dΩ = 0 (20)

where q are adequate test functions.
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7. GALERKIN-LEAST SQUARES (GLS) FORMULATION

The starting point is now the higher order FIC incompressibility equation (13). The weighted
residual form of this equation is ∫

Ω

q

(
εv +

h2
i

24

∂2εv
∂x2

i

)
dΩ = 0 (21)

Integration by parts of the second term in Eq.(21) gives (for 2D problems)∫
Ω

qεvdΩ−
∫
Ω

(
2∑

i=1

h2
i

24

∂q

∂xi

∂εv
∂xi

)
dΩ+

∫
Γ

q

24

(
2∑

i=1

nih
2
i

∂εv
∂xi

)
dΓ = 0 (22)

where ni are the components of the unit normal vector to the boundary Γ.
In the derivation of Eq.(22), space derivatives of the characteristic lengths h1 and h2 have been

neglected. This is correct if we assume that the value of the characteristic lengths is fixed at each
point in space. In any case, this assumption does not invalidate the derivation, as long as the
discretized formulation converges to correct velocity and pressure fields satisfying the momentum
and incompressibility equations in a weighted residual sense and up to the desired order of accuracy.

The term ∂εv
∂xi

in Eq.(22) is expressed as follows. The momentum equations (5) can be written
using Eqs.(8) and (9a)

ρ
∂vi
∂t

− ∂

∂xj
(2µεij) +

2

3
µ
∂εv
∂xi

− ∂p

∂xi
− bi = 0 (23)

From Eq.(23) we deduce (neglecting space variations of the viscosity)

∂εv
∂xi

=
3

2µ
rmi

and ∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv =
3

2µ
rm (24)

where
rmi := −ρ

∂vi
∂t

+
∂

∂xj
(2µεij) +

∂p

∂xi
+ bi (25a)

is the form of the momentum residuals used in the subsequent derivations. Note that rmi = 0 for the
exact incompressible solution.

For 2D problems
rm = [rm1 , rm2 ]

T (25b)

Substituting ∂εv
∂xi

from Eq.(24) into (22) gives∫
Ω

qεvdΩ−
∫
Ω

(
2∑

i=1

τi
∂q

∂xi
rmi

)
dΩ+

∫
Γ

q

(
2∑

i=1

τinirmi

)
dΓ = 0 (26)

with

τi =
h2
i

16µ
(27)

The form of Eq.(26) is equivalent to that obtained in the Galerkin Least Square (GLS) formulation
[4] with the boundary integral modification presented in [8]. The expression for the stabilization τi
of Eq.(27) is similar to that typically found in the stabilization literature for Stokes flows [1, 2, 4, 8].

Expansion of the residual term within the second integral yields the standard Laplacian of pressure
plus additional terms, i.e.∫

Ω

qεvdΩ−
∫
Ω

(
2∑

i=1

τi
∂q

∂xi

∂p

∂xi

)
dΩ−

∫
Ω

2∑
i=1

(
τi

∂q

∂xi

[
− ρ

∂vi
∂t

+
∂

∂xj
(2µεij) + bi

])
dΩ

+

∫
Γ

q

(
2∑

i=1

τini

[
− ρ

∂vi
∂t

+
∂p

∂xj
+

∂

∂xi
(2µεij) + bi

])
dΓ = 0

(28)
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Clearly for linear FE approximations the viscous terms vanish in Eq.(28).
We note that the FIC approach presented here introduces the GLS-type stabilization terms just

in the incompressibility equation. This is a difference with the standard GLS method which also
introduces stabilization terms in the momentum equations [4]. These terms provide symmetry of
the global system of equations and are useful for analysis of Navier-Stokes flows. However, they are
typically unnecessary for analysis of Stokes flows. An exception is some transient problems when
small time steps are used [28].

8. PRESSURE LAPLACIAN STABILIZATION (PLS) METHOD

8.1. Variational form of the mass balance equation in the PLS method

Using the relationships (16b) we can write the second integral in Eq.(22) as∫
Ω

(
2∑

i=1

h2
1

24

∂q

∂xi

∂εv
∂xi

)
dΩ =

∫
Ω

(
2∑

i=1

h2
1

∂q

∂xi

∂p

∂xi

)
|∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv|
24|∇∇∇∇∇∇∇∇∇∇∇∇∇∇p|

dΩ

=

∫
Ω

(
2∑

i=1

τi
∂q

∂xi

∂p

∂xi

)
dΩ (29)

with the stabilization parameters given by

τi =
h2
i |∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv|
24|∇∇∇∇∇∇∇∇∇∇∇∇∇∇p|

, i = 1, 2 (for 2D problems) (30)

Substituting Eqs.(29) into (22) we write the stabilized mass balance equation as∫
Ω

qεvdΩ−
∫
Ω

(∇∇∇∇∇∇∇∇∇∇∇∇∇∇T q)Dv∇∇∇∇∇∇∇∇∇∇∇∇∇∇pdΩ+

∫
Γ

qgdΓ = 0 (31)

For 2D problems

Dv =

[
τ1 0
0 τ2

]
and g =

2∑
i=1

h2
i

24
ni

∂εv
∂xi

(32)

where Dv is a matrix of stabilization parameters.

8.2. Computation of the stabilization parameters in the PLS method

From Eq.(24) we deduce (neglecting space variations of the viscosity)

2

3
µ|∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv| = |rm| (33)

From the first order FIC mass balance equation (12) (with the negative sign) we deduce

1

2
hξ|∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv| = εv (34)

where hξ is the projection of h along the gradient of εv, i.e.

hξ =
hi

|∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv|
∂εv
∂xi

=
hT∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv
|∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv|

(35)

Eqs.(33) and (34) are consistently modified as follows

2

3
µ|v||∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv| = |v||rm| (36)
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A FAMILY OF RESIDUAL-BASED STABILIZED FINITE ELEMENT METHODS 9

1

2
phξ|∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv| = pεv (37)

In Eq.(36) v is the velocity vector.
The r.h.s. of Eqs.(36) and (37) represents the power of the residual forces in the momentum

equations and of the volumetric strain rate, respectively. Note that the product phξ in Eq.(37) is
always positive, as pεv ≥ 0 (see Eq.(14)). Positiveness of pεv pointwise is however ensured in the
computation by taking the modulus of this product in the subsequent expressions.

From Eqs.(36) and (37) we deduce

|∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv| =
|pεv|+ |v||rm|
1
2 |phξ|+ 2

3µ|v|
(38)

Substituting Eq.(38) into (30) gives the expression for the stabilization parameters as

τi =
h2
i (|pεv|+ |v||rm|)

(12|phξ|+ 16µ|v|)|∇∇∇∇∇∇∇∇∇∇∇∇∇∇p|
(39)

The expression for τi in Eq.(39) will vanish for values of vi and p satisfying exactly the
incompressibility equation (εv = 0) and the momentum equations (rm = 0). Clearly for the discrete
problem, the stabilization parameters depend on the numerical errors in the approximation for εv
and rm. In practice, it is advisable to choose a cut-off value for the lower and upper bounds for τi
avoiding very small or too large values of the stabilization parameter (for instance in zones where
∇∇∇∇∇∇∇∇∇∇∇∇∇∇p is small). In the examples shown in the paper we have chosen the following limiting band:
10−8 ≤ τi ≤ 105.

Remark 1. Using just Eq.(33) for defining |∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv| and substituting this into Eq.(30) gives

τi =
h2
i |rm|

16µ|∇∇∇∇∇∇∇∇∇∇∇∇∇∇p|
(40)

In absence of body forces and assuming steady state conditions and a linear FE approximation,
then |rm| = |∇∇∇∇∇∇∇∇∇∇∇∇∇∇p| and

τi =
h2
i

16µ
(41)

which coincides with Eq.(27) deduced for the GLS method. The dimension of τi is s×m3

kg . The
expression for τi in Eq.(41) is typically found in the stabilized FEM literature for Stokes flow
[1, 2, 16], [22]–[28].

Remark 2. Other residual-based expressions for the stabilization parameters τi in the PLS method
can be found. For instance, two alternative expressions for τi are

τi =
h2
i

|∇∇∇∇∇∇∇∇∇∇∇∇∇∇p|

(
ρ|v|+ ρ|hξ|

2∆t

)
|εv|+ |rm|(

12ρ|hξv|+ 6ρ
h2
ξ

∆t + 16µ
) (42a)

and

τi = h2
i

 ρ|hξv|+ µ

24ρ|hξv|| p
εv
|+ 16µ2 |∇∇∇∇∇∇∇∇∇∇∇∇∇∇p|

|rm|

 (42b)

The derivation of above expressions can be found in [46].
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10 E. OÑATE, P. NADUKANDI, S. IDELSOHN, J. GARCı́A AND C. FELIPPA

8.3. PLS boundary stabilization term

From the relationships in Eq.(16b) we express the boundary term g of Eq.(32) as

g =

2∑
i=1

h2
i

24
ni

∂εv
∂xi

=

2∑
i=1

h2
i

24
ni

|∇∇∇∇∇∇∇∇∇∇∇∇∇∇εv|
|∇∇∇∇∇∇∇∇∇∇∇∇∇∇p|

∂p

∂xi
=

2∑
i=1

τini
∂p

∂xi
(43)

The boundary integral in Eq.(31) can therefore be expressed in terms of the pressure gradient
components using Eq.(43) as ∫

Γ

q

(
2∑

i=1

τini
∂p

∂xi

)
dΓ (44)

where all the terms within the integral are computed at the boundary Γ.

Remark 3. For hi = hj = h then τi = τ . In this case, the boundary integral (46) can be expressed
as ∫

Γ

qτ
∂p

∂n
dΓ (45)

where ∂p
∂n = ni

∂p
∂xi

is the gradient of the pressure along the direction normal to the boundary.

We note that all the expressions for τi given in the previous equations are “solution dependent”.
The nonlinear definition of the stabilization parameters can be useful for overcoming the limitations
of the standard definitions of τi. A recent evidence of the usefulness of solution-dependent
stabilization parameters can be found in [28].

9. COMBINED PLS-GLS METHOD

A combination of the PLS and GLS methods can be derived as follows.
From Eqs.(16b) and (24) the following equalities hold

p

εv

∂εv
∂xi

=
∂p

∂xi
(46)

2

3
µ
∂εv
∂xi

= rmi (47)

From these equations we deduce

∂εv
∂xi

=

∂p
∂xi

+ rmi(
p
εv

+ 2
3µ
) (48)

Substituting Eq.(48) into (22) gives∫
Ω

qεvdΩ−
∫
Ω

2∑
i=1

τi
∂q

∂xi

(
∂p

∂xi
+ rmi

)
dΩ+

∫
Γ

2∑
i=1

τini

(
∂p

∂xi
+ rmi

)
dΓ = 0 (49)

with

τi =
h2
i

24
(

p
εv

+ 2
3µ
) (50)

The variational form (49) yields a stabilized method which combines the best features of the PLS
and GLS techniques of previous sections.
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10. COMBINED PENALTY-GLS AND PENALTY-PLS METHODS

The penalty method of Section 6 can be combined with the GLS and PLS procedures of Sections 7
and 8 as follows.

10.1. Combined penalty-GLS method

Combining Eqs.(20) and (26) we can find∫
Ω

qεvdΩ−
∫
Ω

(
β

α
qp+ (1− β)

2∑
i=1

τi
∂q

∂xi
rmi

)
dΩ+ (1− β)

∫
Γ

q

(
2∑

i=1

τinirmi

)
dΓ = 0 (51)

where β is a parameter such that 0 ≤ β ≤ 1.
The variational form (51) yields a stabilized method which combines the key ingredients of the

penalty and GLS techniques.

10.2. Combined penalty-PLS method

From Eqs.(20) and (31) we can write∫
Ω

qεvdΩ−
∫
Ω

[
β

α
qp+ (1− β)(∇∇∇∇∇∇∇∇∇∇∇∇∇∇T q)Dv∇∇∇∇∇∇∇∇∇∇∇∇∇∇p

]
dΩ+ (1− β)

∫
Γ

qgdΓ = 0 (52)

where again 0 ≤ β ≤ 1.
The variational form (52) yields a stabilized method that combines the best features of the penalty

and the PLS methods.

11. PRESSURE-GRADIENT PROJECTION (PGP) FORMULATION

An alternative stabilized formulation can be derived from the higher order FIC equations by
introducing the so-called pressure-gradient projection variables. The resulting stabilized mass
balance equations can be derived is a number of ways [1, 2, 15, 16, 23]. Here we show how a
PGP (for pressure-gradient projection) method can be readily obtained following the higher order
FIC approach.

From the momentum equations it can be found

h2
i

24

∂εv
∂xi

= τirmi (53)

where rmi is defined in Eq.(25a). An expression for the stabilization parameter τi is [1, 2, 15, 16, 23]

τi =
h2
i

24

[
ρl2

4∆t
+

2µ

3

]−1

(54)

and l is a typical grid distance. The expression for τi of Eq.(54) can be obtained as a particular case
of Eq.(42a).

For relatively fine grids the numerical solution is insensitive to the values of hi := αil [30]. In
[46] we found that good results are obtained for the range of values of hi such that

√
2 ≤ αi ≤

√
6,

where l is a typical grid distance.
For the steady state problems solved in this work the form of τi of Eq.(27) is used with

αi = α =
√
6.

Note that the stabilization parameters in the PGP method are constant for each element. This is
an important difference versus the PLS and penalty formulations of previous sections, where a non
linear (and consistent) form for the stabilization parameters is used.
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12 E. OÑATE, P. NADUKANDI, S. IDELSOHN, J. GARCı́A AND C. FELIPPA

In the standard PGP method the momentum residuals rmi are split as rmi :=
∂p
∂xi

+ πi where πi

are the so-called pressure-gradient projection variables [15, 16]. In our work we use a slight different
approach and split the momentum equations as

rmi :=
∂p

∂xi
+

1

τi
πi (55)

where

πi = τi

(
−ρ

∂vi
∂t

+
∂sij
∂xj

+ bi

)
(56)

is the ith pressure-gradient projection weighted by the ith stabilization parameter. The πi’s are now
taken as additional variables which are discretized with the standard FEM in the same manner as
for the pressure.

The split of Eq.(55) ensures that the term 1
τi
πi is discontinuous between adjacent elements

after discretization. This is essential for accurately capturing high discontinuous pressure gradient
jumps typical of fluids with heterogeneous physical properties (either the viscosity or the pressure)
[39, 44, 45]. In this manner the term 1

τi
πi can match the discrete pressure gradient term ∂p

∂xi
which

is naturally discontinuous between elements for a linear approximation of the pressure.
Substituting Eq.(53) into the second and third integral of Eq.(22) and using (55) gives (for 2D

problems)∫
Ω

qεvdΩ−
∫
Ω

2∑
i=1

∂q

∂xi

(
τi

∂p

∂xi
+ πi

)
dΩ+

∫
Γ

q

2∑
i=1

ni

(
τi

∂p

∂xi
+ πi

)
dΓ = 0 (57)

The boundary integral in Eq.(57) is typically neglected in PGP formulations and will be
disregarded from here onward.

The following addition equations are introduced for computing the pressure gradient projection
variables πi ∫

Ω

2∑
i=1

w̄i

(
∂p

∂xi
+

1

τi
πi

)
dΩ = 0 (58)

where w̄i = q is usually taken.
Recall that the term ∂p

∂xi
+ 1

τi
πi (no sum in i) is an alternative expression for the momentum

residual equation (see Eq.(55)). This term is enforced to vanish in an average sense via Eq.(58).

12. ORTHOGONAL SUB-SCALES (OSS) FORMULATION

The OSS method can be readily derived by writing the momentum residuals as

rmi = (r̄mi + πi) (59)

where r̄mi are the discrete residuals of the momentum equations and πi are additional variables that
are now interpreted as the projection of the discrete momentum residuals into the velocity space
(without boundary conditions) [17, 20, 21].

The variational form for the incompressibility equations is obtained by substituting Eq.(59) into
(26). This gives (neglecting the boundary terms)∫

Ω

qεvdΩ−
∫
Ω

2∑
i=1

∂q

∂xi
τi(r̄mi + πi)dΩ = 0 (60)

The πi variables are computed by the following additional equations∫
Ω

2∑
i=1

w̄iτi(r̄mi + πi)dΩ = 0 (61)
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A FAMILY OF RESIDUAL-BASED STABILIZED FINITE ELEMENT METHODS 13

with w̄i = q. Eq.(61) enforces the consistency of the method in an average sense.
The stabilization parameters τi are computed as in the PGP method of previous section.

Remark 4 . For linear FE interpolations the term r̄mi is simply

r̄mi = −ρ
∂v̄i
∂t

+
∂p̄

∂xi
+ bi (62)

where v̄i and p̄ are the approximate FE values for the velocities and the pressure.

13. PLS+π METHOD

The PLS method presented in Section 10 can be substantially enhanced if the momentum residuals
appearing in the expression for the stabilization parameters τi are computed using Eq.(59). The
resulting expression for τi is

τi =
h2
i (|pεv|+ |v||r̄m + ππππππππππππππ|)

(12|phξ|+ 16µ|v|) |∇∇∇∇∇∇∇∇∇∇∇∇∇∇p|
(63)

This ππππππππππππππ variables are computed via Eq.(61) following the discretization procedure described in the
next section.

The expression for τi of Eq.(63) increases the efficiency and accuracy of the PLS method (see
Example 17.5).

14. FINITE ELEMENT DISCRETIZATION

14.1. Discretized equations

The domain Ω is discretized with a mesh of triangles or quadrilaterals (for 2D) and tetrahedra or
hexahedra (for 3D).

For the penalty, GLS and PLS formulations, the velocities and the pressure are interpolated over
each element using the same approximation as (for 3D problems)

v =

 v1
v2
v3

 =

n∑
j=1

Njv̄j , p =

n∑
j=1

Nj p̄j (64)

For the PGP and OSS formulations the ππππππππππππππi variables are also interpolated using the shape functions
Ni as

ππππππππππππππ =

 π1

π2

π3

 =

n∑
j=1

Njπ̄πππππππππππππ
j (65)

In the above equations Nj = NjI3, Nj is the standard shape function for node j, I3 is the 3× 3
unit matrix, n is the number of nodes in the element (i.e. n = 3/4 for linear triangles/tetrahedra) and
v̄j , p̄j and π̄πππππππππππππj are the values of the velocity vector, the pressure and the ππππππππππππππ variables vector at node j,
respectively. Indeed, any other FE approximation for v, p and ππππππππππππππ can be used.

Substituting the approximations (64) and (65) into the weak form of the momentum equations
(Eq.(10)) and in the adequate variational expression for the incompressibility equation, gives the
following global system of equations (for all the methods considered in the paper)

M̄ ˙̄a+Hā = f (66)

where ˙̄a = d
dt ā and the different matrices and vectors for the different stabilized FE methods are
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14 E. OÑATE, P. NADUKANDI, S. IDELSOHN, J. GARCı́A AND C. FELIPPA

Penalty, GLS, PLS and combined methods

ā =

{
v̄
p̄

}
, M̄ =

[
M 0

M̂ 0

]
, H =

[
K Q

(QT +R) S

]
, f =

{
fv
fp

}
(67a)

where

Penalty method : S = P , R = M̂ = 0 , fp = 0

GLS method : S = −L+B

PLS method : S = −L+B , R = M̂ = 0 , fp = 0

PLS-GLS method : S = −2L+B

Penalty-GLS method : S = βP+ (1− β)(−L+B) , R = (1− β)R

Penalty-PLS method : S = βP+ (1− β)(−L+B) , R = M̂ = 0 , fp = 0

(67b)

PGP method

ā =

 v̄
p̄
π̄πππππππππππππ

 , M̄ =

 M 0 0
0 0 0
0 0 0

 , H =

 K Q 0
QT −L −C
0 −CT −T

 , f =

 fv
0
0


(68)

OSS method

ā and H as in Eq.(68)

M̄ =

M 0 0
M̄p 0 0
Mπ 0 0

 , f =

 fv
fp
fπ

 with fπ =

 fπ1

fπ2

fπ3

 (69)

The matrices and vectors in Eqs.(67)–(69) are formed by assembling the element contributions
given in Box 1 for 3D problems.

Remark 5. For linear triangles, matrices M, P and T are computed with a three point Gauss
quadrature. The rest of the matrices and vectors in Box 1 are computed with just a one-point
quadrature. A higher order quadrature might be required in some cases for integrating more
accurately the non linear terms involving the stabilization parameters τi.

Remark 6. The contribution of the stabilization terms to the stiffness matrix K which are typical
in the standard GLS formulation are not taken into account in this work. These terms are
irrelevant for the analysis of the steady-state Stokes problems presented in the paper.

14.2. Solution schemes for penalty, GLS, PLS and combined methods

For penalty, GLS, PLS and combined methods, a monolithic transient solution of Eq.(66) can be
found using the following iterative scheme

j+1ān+1 =
[
jH̄n+1

]−1
(
f +

1

∆t
M̄an

)
(70a)

with
H̄ = H+

1

∆t
M̄ (70b)

In Eq.(70a) (·)n and (·)n+1 denote values at times t and t+∆t, respectively while the upper left
index j denotes the iteration number; i.e. j(·)n+1 denotes values at time t+∆t and the jth iteration.
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Me
ij =

∫
Ωe

ρNiNjdΩ , Ke
ij =

∫
Ωe

GT
i DGjdΩ , Qe

ij =

∫
Ωe

GT
i mNjdΩ

with

Gi = ĜNi with Ĝ =



∂

∂x1
0 0

0
∂

∂x2
0

0 0
∂

∂x3
∂

∂x2

∂

∂x1
0

∂

∂x3
0

∂

∂x1

0
∂

∂x3

∂

∂x2



, m =



1
1
1
0
0
0


, D = µ

[
2I3 0
0 I3

]

P e
ij =

∫
Ω

1

α
NiNjdΩ , Le

ij =

∫
Ωe

τk
∂Ni

∂xk

∂Nj

∂xk
dΩ , Be

ij =

∫
Γ

3∑
k=1

(
τknkNi

∂Nj

∂xk

)
dΓ

M̂e
ij =

∫
Ωe

mTGiρ[τ ]NjdΩ−
∫
Γe

Niρττττττττττττττ
T
nNjdΓ

(Me
π)ij = −

∫
Ωe

ρNT
i [τ ]NjdΩ

Me
p as M̂e neglecting the boundary term.

Re
ij = −

∫
Ωe

(∇∇∇∇∇∇∇∇∇∇∇∇∇∇TNi)[τ ]Ĝ
T (DGj)dΩ+

∫
Γe

Niττττττττττττττ
T
n Ĝ

T (DGj))dΓ

ττττττττττττττ = [τ1, τ2, τ3]
T , [τ ] =

 τ1 0 0
0 τ2 0
0 0 τ3

 , ττττττττττττττn = [τ ]n

PGP : Ce
ij =

∫
Ωe

mTGiNjdΩ , Te
ij =

∫
Ωe

Ni[τ ]
−1NjdΩ

OSS : Ce
ij =

∫
Ωe

mTGi[τ ]NjdΩ , Te
ij =

∫
Ωe

Ni[τ ]NjdΩ

fevi
=

∫
Ωe

NibdΩ+

∫
Γe
t

NitpdΓ , i, j = 1, 2, 3

fe
pi

=

∫
Ωe

(
3∑

j=1

τj
∂Ni

∂xj
bj

)
dΩ−

∫
Γe

Ni

(
3∑

j=1

τjnjbj

)
dΓ , (fπj )i = −

∫
Ω

NiτjbdΩ

f̄pi
as fpi

neglecting the boundary term.
I3 : 3× 3 unit matrix , b = [b1, b2, b3]

T , tp = [tp1, t
p
2, t

p
3]

T

Γe
t : boundary of element e coincident with the external Neuman boundary

Box 1. Element expressions for the matrices and vectors in Eqs.(67)–(69) for 3D problems. The
expression for τi changes for the different stabilized methods

For the steady state problems solved in this work we have found the velocity and pressure
variables simultaneously by inverting the system

Hā = f (71)

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
Prepared using fldauth.cls DOI: 10.1002/fld
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Clearly, for the PLS method the solution of Eq.(71) must be found iteratively, as the stabilization
parameters are a function of the velocity and the pressure. A simple direct iteration scheme gives

j+1ā = [jH]−1f (72)

For transient problems, an implicit segregated approach has typically more advantages. For
instante, the following iterative scheme can be used for computing v̄ and p̄ in time as

Step 1

j+1v̄n+1 = v̄n +

[
1

∆t
M+K

]−1

[fv +Qjp̄n+1] (73a)

Step 2

j+1p̄n+1 = S−1

[
fp − (QT +R)j+1v̄n+1 − 1

∆t
M̂(v̄n+1 − v̄n)

]
(73b)

It is important to note that neglecting matrix B in Eq.(73b) for the GLS and PLS methods would
require prescribing the pressure at some point of the domain for inverting the Laplace matrix L. As
mentioned earlier, the typical option of making p = 0 at a free boundary introduces an error in the
mass conservation equation leading to mass losses for viscous free surface flow problems [43]. The
presence of the boundary matrix B in Eq.(73b) avoids the need for prescribing the pressure at the
boundary in those cases.

14.3. Solution scheme for PGP and OSS methods

The solution of Eqs.(66) for the PGP and OSS methods is typically performed via an iterative
staggered scheme.

The π̄πππππππππππππ nodal variables can be eliminated from Eqs.(66) as follows

PGP method : π̄πππππππππππππ = −T−1CT p̄ (74a)

OSS method : π̄πππππππππππππ = −T−1
(
Mπ ˙̄v +CTp̄− fπ

)
(74b)

Substituting π̄πππππππππππππ from Eqs.(74) into the second row of Eqs.(66) yields the following system of two
equations for v̄ and p̄

PGP method :
M ˙̄v +Kv̄ +Qp̄ = fv
Qv̄ − (L− L̂)p̄ = 0

(75a)

OSS method :
M ˙̄v +Kv̄ +Qp̄ = fv

(M̄p −CT−1Mπ) ˙̄v − (L− L̂)p̄ = f̄p −T−1fπ
(75b)

In Eqs.(75) L̂ = CT−1CT is the discrete pressure Laplace matrix. This matrix has a wider
bandwidth than the Laplace pressure matrix L in Eqs.(67b). The difference between L and L̂
provides the necessary stabilization for the accurate solution of Eqs.(75).

The system of equations (75) can be solved in time with an iterative segregated scheme.
For the steady state case the solution for the velocity and pressure is found simultaneously by

Eq.(71) with

H =

[
K Q

QT (L̂− L)

]
, a =

{
v̄
p̄

}
, f =

{
fv
f̂p

}
(76)

where f̂p = 0 for the PGP method and f̂p = f̄p −T−1fπ for the OSS method.
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Remark 7. The elimination of the ππππππππππππππ variables via Eqs.(74) can be simplified by using a diagonal
form of matrix T obtained as Td = diag(T). This, however, does not affect the bandwith of
matrix L̂.

Remark 8. The bracketed matrix multiplying ˙̄v in the second of Eqs.(75b) vanishes for the case of
constant density.

15. DEFINITION OF THE CHARACTERISTIC LENGTHS

In our work we have used the following definition for hi for all the stabilized methods studied

hi = max[lTj aj ] , j = 1, ns (77)

with a1 = [1, 0]T and a2 = [0, 1]T for 2D problems, li are the vectors along the sides of the element
and ns is the number of sides (ns = 3 for triangles). For instance, for side 1 of a triangle linking
nodes 2 and 3, li = [x3

1 − x2
1, x

3
2 − x2

2]
T , where xi

1, x
i
2 are the horizontal and vertical coordinates of

node i.
For the examples solved in this paper results using the expression for hi of Eq.(77) have been

found to be very similar in all cases to those using a constant value for hi defined as

hi = he with he = [Ae]1/2 (78)

16. SOME COMMENTS ON THE DIFFERENT STABILIZATION METHODS

16.1. Penalty method

For the penalty method the system matrix H is symmetrical. Matrix M becomes ill-conditioned
for very large values of the penalty parameter α. A cut-off for α when the solution approaches the
incompressibility limit is therefore mandatory to avoid the volumetric locking problem [1, 2].

16.2. GLS method

For the GLS method presented here matrices M̂, R and B are non symmetrical. Symmetry of
matrices M̄ and H can be simply found by shifting the non symmetrical terms to the r.h.s. of
Eqs.(66). This introduces a non linearity in the solution scheme.

16.3. PLS method

For the PLS method the boundary stabilization matrix B is non-symmetrical. Symmetry of the
system matrix H can be recovered by shifting the boundary terms to the r.h.s. of Eq.(66). This gives

H =

[
K Q
QT −L

]
, f =

{
fv
qp

}
(79a)

For 3D problems

qepi
=

∫
Γe

Ni

(
3∑

j=1

τjnj
∂p

∂xj

)
dΓ (79b)

The boundary force vector qp is computed at each iteration as part of the iterative solution process.
Preliminary experiences in applying this method show that this does not increase the total number
of iterations.

Symmetry of the boundary stabilization matrix can also be recovered by defining matrix B as

Be
ij =

∫
Γ

τNiNjdΓ with τ =

3∑
k=1

τknk

p

∂p

∂xk
(80)
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Matrix Be
ij of Eq.(80) has now the form of a boundary mass-type matrix. The price for the

symmetry of B is the increased non linearity of the boundary stabilization parameter.

16.4. Combined penalty-GLS and penalty-PLS methods

The combination of the stabilization matrix emanating from the penalty method with that of the GLS
method or the PLS method can be advantageous to increase the robustness of the overall stabilized
formulation in problems where the GLS and PLS formulations have difficulties to obtain a stable
solution throughout the analysis domain.

16.5. PGP and OSS method

All matrices in the PGP method are symmetrical. For the OSS method matrix M̄ is not symmetrical.
Symmetry of matrix M̄ can be found by shifting the non symmetrical terms (involving time
derivatives of the velocities) to the r.h.s. of Eq.(66).

16.6. Comparison between the different stabilization methods

1. In the PGP and OSS methods the stabilization parameter is typically taken as constant (at
least for homogeneous meshes and constant viscous fluids). In the PLS method, however, the
stabilization parameter τi varies as a function of the volumetric strain rate and the residual of
the momentum equations.

2. In the PGP and OSS methods the amount of stabilization is variable in space. This variation
is introduced by the difference between the Laplace pressure matrix L and the discrete
pressure Laplace matrix L̂. In the PLS method (and also in the penalty method presented
here) the amount of stabilization is also variable in space, but the variation is introduced by
the consistent stabilization parameters.

3. The consistency in the GLS methods is guaranteed by introducing the discrete residual of the
momentum equations in the stabilized mass balance equation. Consistency in the PGP and
OSS methods is enforced by introducing additional equations representing the vanishing of
the momentum residuals in an average sense. In the PLS method the consistency is guaranteed
by the expression of the stabilization parameters which also vanish for the exact solution (i.e.
for εv = 0 and rmi = 0).

4. The PLS method is nonlinear due to the dependence of the stabilization parameters with the
volumetric strain rate, the pressure, the pressure gradient and the residual of the momentum
equations. The PGP and OSS methods are non linear due to the definition of the πi variables
which are a function of the pressure field. The GLS method can be considered as a linear
method.

5. All methods, except the penalty method, introduce a boundary stabilization term. Accounting
for this term is relevant in the GLS and PLS methods for free surface flow problems.

6. In PGP and OSS methods the boundary stabilization term is usually neglected. This
simplification is acceptable on external boundaries, but cannot be neglected at internal
interfaces with a jump in the physical properties.

7. PGP and OSS methods typically yield identical results for problems when the force term bi
belongs to the space of finite element functions and linear (or bilinear) elements are used [15].

8. The PLS and GLS methods are a priori more efficient than the PGP and OSS methods as:
(i) They do not need the evaluation of an auxiliary vector field (i.e. the πi variables).
(ii) The bandwidth of the assembled equation system for the pressure is smaller due to the
larger bandwidth of the discrete Laplace matrix L̂.
(iii) As a consequence of (i) and (ii) the computational cost of the PLS and GLS methods is
smaller.
(iv) The PLS method can represent exactly a pressure gradient jump.
Numerical results reported in the next section and in [46] show that the PLS in many cases
even more accurate than the GLS, PGP and OSS methods.
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17. EXAMPLES OF APPLICATION

We present a number of examples of simple steady-state Stokes flow problems. The aim is to
validating and comparing the accuracy and efficiency of some of the methods presented in the paper.
The methods compared are:

• PLS method of Section 8 using the expression for τi of Eq.(39). The effect of including or not
the boundary integral (BI) terms of Eq.(31) has been studied.

• PLS+π method of Section 13. This method was used just in the manufactured flow problem
(Section 17.5).

• GLS method of Section 7, including and excluding the boundary integral (BI) terms of
Eq.(28).

• OSS method of Section 12 with consistent and diagonal forms of matrix T.

The problems solved are the following:

i) Hydrostatic flow problem for a single fluid in a square domain.
ii) Two-fluid hydrostatic problem in a square domain.

iii) Poiseuille flow in a trapezoidal domain.
iv) Lid driven cavity flow problem.
v) Manufactured flow problem in a trapezoidal domain.

For all problems the nodal velocities and pressures have been found simultaneously under steady-
state conditions by solving Eq.(71). For the GLS and the OSS methods the solution is found in
a single step. For the PLS method the direct iteration scheme of Eq.(72) is used. The first PLS
(and PLS+π) solution is found in all cases using a constant value of τi = τ = 10−5. This roughly
corresponds to the value of τi for the GLS and OSS methods given by Eq.(27).

The convergence of the nonlinear iterations for the PLS method is measured in the Euclidean
vector norm for velocities and pressure measured as

∥jϕ̄ϕϕϕϕϕϕϕϕϕϕϕϕϕ− j−1ϕ̄ϕϕϕϕϕϕϕϕϕϕϕϕϕ∥L2

∥jϕ̄ϕϕϕϕϕϕϕϕϕϕϕϕϕ∥L2

≤ ϵ with ϕϕϕϕϕϕϕϕϕϕϕϕϕϕk =

v̄1k
v̄2k
p̄k

 and ∥ϕ̄ϕϕϕϕϕϕϕϕϕϕϕϕϕ∥L2 =

[∑
a

(ϕ̄ϕϕϕϕϕϕϕϕϕϕϕϕϕ
a
)2

]1/2

In our work we have chosen ϵ = 10−4 for examples i)–iv) and ϵ = 10−3 for example v). A
comparison of the PLS and PGP methods for problems i, ii and iv is reported in [46].

17.1. Hydrostatic flow problem for a single fluid in a square domain

We solve for the pressure distribution in a square container filled with water. The body forces are
b1 = b2 = ρg with values of the density and gravity constant equal to ρ = 1000 Kg/m3 and g = −10
m/s2, respectively. The viscosity is µ = 10−3 Ns/m2. The normal velocity has been prescribed to
zero at the bottom line and the two vertical walls. The nodes on the top surface are allowed to move
freely. The solution for this simple problem is v = 0 an hydrostatic distribution of the pressure
which is independent of the fluid viscosity. The problem is solved with a 2× 10× 10 mesh of 3-
noded triangles.

Figure 2a shows the pressure distribution obtained all methods. A converged solution which
approximates practically the exact hydrostatic distribution is found with the PLS method in just
two iterations.

17.2. Two-fluid hydrostatic problem in a square domain

The same square container of the previous example is considered assuming that the upper half
is filled with a liquid of density ρ = 10−3 Kg/m3. The viscosity is the same for both fluids with
µ = 10−3 Ns/m−2. The body forces, the boundary conditions and the mesh are the same as for
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(a)

 
(b)

Figure 2. (a) Hydrostatic flow problem for a single fluid in square domain. (b) Two-fluid hydrostatic problem
in square domain. Pressure distribution for both problems obtained with PLS (with and without BI), GLS

(with and without BI) and OSS (using T and Td). Results for all methods coincide.

 
Figure 3. Two-fluid hydrostatic problem. Convergence of the PLS method (with and without BI).

the previous example. The exact analytical solution is v = 0 in the whole container and a linear
distribution of the pressure ranging from p = 0 at the top (x2 = 1.0 m) to p = 10−2 Pa at x2 = 0.5
m; and again a linear distribution of the pressure from p = 10−2 Pa at x2 = 0.5 m to p = 5000 Pa at
x2 = 0.

Results for the pressure distribution are shown in Figure 2b. Numerical results for all methods
studied coincide.

The converged solution for the PLS method is obtained in three iterations. The convergence
history is shown in Figure 3.

17.3. Poiseuille flow in a trapezoidal domain

A trapezoidal domain Ω is considered with corner nodes given by: (0,0),(6,0),(4,2) and (2,2). The
domain is discretized with a mesh of 2× 10× 10 3-noded triangles (Figure 4). A parabolic profile
for the horizontal velocity is prescribed at both the inlet and outlet lines.
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Figure 4. Trapezoidal domain. Symmetrical mesh of 2× 10× 10 3-noded finite elements
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Figure 5. Poiseuille flow in a trapezoidal domain. (a) Pressure distribution obtained with PLS (with and
without BI), GLS (with BI) and OSS (using T and Td). (b) Pressure distribution obtained with GLS without

BI

Figure 5a shows the pressure distribution obtained with PLS method (with and without BI),
the GLS method (with BI) and the OSS method (using T and Td). Results for all these methods
coincide. Figure 5b shows the GLS results not including the BI term. Note the inaccuracies in the
pressure distribution near the edge.

The same trend is observed for the results of the distribution of the v1 velocity shown in Figure
6. Note the slight increase in accuracy obtained in the PLS method by including the BI term.

The convergence of the PLS solution with and without taking into account the BI terms is shown
in Figure 7. The convergence improves when the BI terms are included (3 iterations versus 5
iterations).

17.4. Lid a driven cavity problem

The flow in a driven square cavity of 1× 1 m2 is studied.
The horizontal velocity on the top surface nodes has been prescribed to vp1(x1, 1) = 1 m/s. The

vertical velocity has also been prescribed to zero at all nodes on the top surface with the exception
of the central node with coordinates (0.5,1) which is left free to move in the vertical direction.
The normal velocity at the bottom line and the two vertical walls has been prescribed to zero. The
physical properties are ρ = 10−10 Kg/m3, g = 0 N/m2, µ = 1 Ns/m2.

It can be easily verified that, for the material properties chosen, the value of the stabilization
parameter τi for the PLS method is approximately constant over the whole analysis domain and
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00.30.60.91.21.51.82.12.42.7 33.33.63.94.24.54.85.15.45.7 6 0 0.10.20.30.40.50.60.70.80.91
1.11.21.31.41.51.61.71.81.920

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

y

x

U
x

(b) GLS (without BI)

00.30.60.91.21.51.82.12.42.7 33.33.63.94.24.54.85.15.45.7 6 0 0.10.20.30.40.50.60.70.80.91
1.11.21.31.41.51.61.71.81.920

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

x

U
x

(c) PLS (with BI)
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(d) GLS (with BI) and OSS (with T and Td)

Figure 6. Poiseuille flow in a trapezoidal domain. Results for the velocity v1 (denoted ux in the figure
obtained with (a) PLS (without BI), (b) GLS (without BI), (c) PLS (with BI), (d) GLS (with BI) and OSS

(with T and Td)

equal to

τi = τ ≃ h2
i

16µ
=

10−2

16
= 6.25× 10−3m

3s

Kg
(81)

Figure 8 shows the pressure distributions in the cavity for all the methods studied using a
2× 20× 20 mesh of 3-noded triangles. An analysis of the results of Figure 8 shows that (a) the
PLS method captures better the singularity of the pressure values at the top corner nodes, (b) the
effect of the BI terms is irrelevant for the PLS method but has a positive influence in the GLS method
in terms of a better capture of the pressure singularity, (c) the diagonal form of matrix T introduce a
slight diffusion in the OSS results. The pressure contour lines for the considered methods is shown
in Figure 9.
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Figure 7. Poiseuille flow in a trapezoidal domain. Convergence of the PLS solution. (a) Without BI term. (b)
With BI terms
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(a) PLS (without BI)
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(b) GLS (without BI)
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(c) OSS (with Td)
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(d) PLS (with BI)
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(e) GLS (with BI)
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(f) OSS (with T)

Figure 8. Lid driven cavity problem. Pressure distribution results with (a) PLS (without BI). (b) GLS
(without BI). (c) OSS (with Td). (d) PLS (with BI). (e) GLS (with BI). (f) OSS (with T )

Figure 10 shows the convergence of the PLS results. The convergence curve is practically the
same accounting or not for the BI terms. Convergence is slower in this case due to the pressure
singularity at the top corners.
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(a) PLS (without BI)
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(b) GLS (without BI)
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(c) OSS (with Td)
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(d) PLS (with BI)
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(e) GLS (with BI)
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(f) OSS (with T)

Figure 9. Lid driven cavity problem. Pressure contours with (a) PLS (without BI). (b) GLS (without BI). (c)
OSS (with Td). (d) PLS (with BI). (e) GLS (with BI). (f) OSS (with T)
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Figure 10. Lid driven cavity problem. Convergence of PLS results. Convergence curve with or without BI
terms are similar

17.5. Manufactured flow problem in a trapezoidal domain

The trapezoidal domain of Figure 4 is discretized by a series of symmetrical mesh consisting
of 2× n× n 3-noded triangular elements and using n ∈ {10, 12, 14, 16, 18, 20, 24, 32, 36, 40}. The
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following relative error norms are used to study the convergence rates of the considered methods

ehvH1 =
∥v − v̄∥1
∥v∥1

=

√∫
Ω
∇(v − v̄) : ∇(v − v̄) dΩ√∫

Ω
∇v : ∇v dΩ

(82a)

ehpL2 =
∥p− p̄∥0
∥p∥0

=

√∫
Ω
(p− p̄)2 dΩ√∫
Ω
p2 dΩ

(82b)

where, (v̄, p̄) is the finite element approximation of the exact solution (v, p). The numerical
solutions corresponding to the GLS, PLS, PLS+π and OSS methods, are compared with the
following solutions: the nodally exact interpolant denoted by (Ihv, Ihp) and the best approximation
(BA) with respect to the L2 norm (for pressure) and the H1 semi-norm (for velocity) denoted by
P 0
hp and P 1

hv respectively. The solutions Ihv, Ihp, P 0
hp and P 1

hv can be found as shown in Eq.(83)

Ihv := Nava; Ihp := Napa (83a)∫
Ω

qh(p− P 0
hp) dΩ = 0 ∀ qh ∈ Qh ⇒ ∥ p− P 0

hp ∥0 ≤ ∥ p− p̄ ∥0 ∀ p̄ ∈ Qh (83b)∫
Ω

∇vh : ∇(v − P 1
hv) dΩ = 0 ∀ vh ∈ V h ⇒ ∥ v − P 1

hv ∥1 ≤ ∥ v − v̄ ∥1 ∀ v̄ ∈ V h (83c)

where, (va, pa) represent the nodal values of the exact solution (v, p), Qh ⊂ L2(Ω) and V h ⊂
H1

0 (Ω). In the current example Qh and V h are the solution spaces spanned by the 3-noded triangle
shape functions.

Consider a manufactured flow problem in which choosing the force term f = (f1, f2), with
f1 = µ(6x− 17), f2 = 0, we have the exact solution to the Stokes problem as v = (v1, v2), with
v1 = y(2− y)/2, v2 = 0 and p = µ(3x2 − 18x+ 1). Note that changing the magnitude of µ, any
inf-sup stable Galerkin-FEM will give numerical solutions that would scale proportional to the exact
solution. Thus, for this manufactured problem, the relative errors ehvH1 and ehpL2 will be independent
of µ.

The ehvH1 and ehpL2 convergence rates for the GLS, PLS, PLS+π and OSS methods using µ = 1
are shown in Figure 11.

Figure 11(a) illustrates the ehvH1 error lines for the considered methods. The error line of the GLS
method is slightly shifted above the error lines of Ihv (label: ‘Interpolant’) and P 1

hv (label: ‘H1-
BA’). The error line of the OSS method shows a slight deviation from those of Ihv and P 1

hv, but
it quickly merges with the later error lines on mesh refinement. The error line of the PLS method
shows an improvement over the GLS method on coarse meshes but this advantage is lost on finer
meshes wherein the two error lines merge. The error line of the PLS+π method practically coincides
with the error lines of Ihv and P 1

hv.
Figure 11(b) illustrates the ehpL2 error lines for the considered methods. The error line of the GLS

method not only shows the greatest deviation from the error lines of Ihp (label: ‘Interpolant’) and
P 0
hp (label: ‘L2-BA’) but also a sub-optimal convergence rate. The OSS method on the other hand

show a convergence rate similar to that of Ihp and P 0
hp and the improvement over the GLS method is

clear. The PLS and PLS+π methods show convergence rates similar to that of the GLS and the OSS
methods respectively. Nevertheless, the error lines of the former two methods are located closer to
the error lines of Ihp and P 0

hp showing improved accuracy in the considered norms. The increase in
accuracy is particularly relevant for the PLS+π method as clearly seen in Figure 11b.

The PLS results for each of the meshes studied were obtained in some 10 iterations whereas
typically 7 iterations were needed to obtain each of the PLS+π solutions.
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Figure 11. Convergence rates for the GLS, OSS, PLS and PLS+π methods: (a) the relative errors in the
velocity (ehvH1 ) and (b) the relative errors in the pressure (ehpL2 )

18. CONCLUSIONS

We have presented a family of stabilized finite element (FE) methods derived via first and second
order the finite calculus (FIC) procedures. We have shown that several well known existing
stabilized FE methods such as the penalty technique, the Galerkin Least Square (GLS) method,
the Pressure Gradient Projection (PGP) method and the Orthogonal Sub-Scales (OSS) method are
recovered from the general residual-based FIC stabilized form. New stabilized FE methods such
as the Pressure Laplacian Stabilization (PLS) and the PLS+π method with consistent non linear
forms of the stabilization parameters have been derived. The distinct feature of the PLS and PLS+π
methods is that the stabilization terms depend on the discrete residuals of the momentum and the
incompressibility equations.

The numerical results obtained for the Stokes problems solved in this work show that the PLS
method and, in particular, the PLS+π method provide accurate solutions that improve in several
cases the results of the traditional GLS and OSS methods. Results presented in [46] indicate that the
PLS methods has also a superior performance than the PGP method for some problems.

The prize to be paid for this increase in accuracy is the higher computational cost associated to
the non linear solution which is intrinsic to the PLS method. The potential and advantages of the
PLS method will be clearer for transient problems solved via staggered schemes or for non linear
flow problems which invariably require an iterative scheme.
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