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Abstract

We propose a fourth-order compact scheme on structured meshes for the Helmholtz
equation given by R(φ) := f(x) + ∆φ + ξ2φ = 0. The scheme consists in taking the
alpha-interpolation of the Galerkin finite element method and the classical central finite
difference method. In 1D this scheme is identical to the alpha-interpolation method [48]
and in 2D making the choice α = 0.5 we recover the generalized fourth-order compact
Padé approximation [56, 57] (therein using the parameter γ = 2). We follow [10, 15] for
the analysis of this scheme and its performance on square meshes is compared with that of
the quasi-stabilized FEM [15]. In particular we show that the relative phase error of the
numerical solution and the local truncation error of this scheme for plane wave solutions
diminish at the rate O

(

(ξℓ)4
)

, where ξ, ℓ represent the wavenumber and the mesh size
respectively. An expression for the parameter α is given that minimizes the maximum
relative phase error in a sense that will be explained in Section 4.5. Convergence studies
of the error in the L2 norm, the H1 semi-norm and the l∞ Euclidean norm is done and
the pollution effect is found to be small.

Key words: Helmholtz equation, alpha-interpolation of FEM and FDM, compact sten-
cils, dispersion analysis

1 Introduction

In this article we study the Helmholtz equation given by R(φ) := f(x) +∆φ+ ξ2φ = 0 and
subjected to Dirichlet boundary conditions. The solution φ to this equation is oscillatory and
ξ is the wave number (spatial frequency) of φ. If λm is an eigenvalue of the operator −∆,
then for ξ 6=

√
λm the problem has a unique solution. On the contrary, i.e. for ξ =

√
λm the

problem is indefinite. In this case if the equation and the Dirichlet boundary conditions are
homogeneous then we end up in a differential eigenvalue problem. It follows that the solution
is not unique and can be represented as a scalar multiple of the eigenfunction corresponding
to each eigenvalue. Let λh

m represent an eigenvalue of the problem after any appropriate
discretization. Unlike the set of eigenvalues {λm} which is infinite, the set {λh

m} is finite and
its dimension is equal to that of the discrete space. Thus when the wave number ξ →

√

λh
m

the discrete problem tends to be indefinite. This case is usually referred to as the case of
degeneracy and here the discrete problem is ill-conditioned.

As the current problem admits a variational principle, naturally, discretization methods
based on variational formulations viz. the Galerkin and the Trefftz–Galerkin type methods
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have been preferred to other methods. The Galerkin type methods are domain-based wherein
the integral statement involves only the weak form of the governing differential equation and
the sub-space of test-functions are assumed to satisfy a priori the kinematic compatibility and
essential boundary conditions. The Trefftz–Galerkin type methods are boundary-based and
are formulated using the reciprocal principle wherein the integral statement involves only the
kinematic compatibility and essential boundary conditions of the problem and the sub-space
of test-functions are assumed to satisfy a priori the governing differential equation [1, 2].

In the context of the Galerkin type methods, the finite element method (FEM) is a
powerful technique to systematically generate subspaces of test-functions (classically piecewise
polynomial spaces). Some of the earlier works on the use of FEM for the numerical solution
of the Helmholtz equation can be found in [3–10] and the references cited therein. In [5]
and [7] error estimates were given for the asymptotic (ξ2ℓ assumed sufficiently small) and
pre-asymptotic (ξℓ assumed sufficiently small) cases respectively. It was shown that for the
discrete problem the LBB1 constant can be expressed as γh = min{|λh

m − ξ2|/λh
m} [6]. Thus

for the continuous problem (visualized as ℓ → 0) the LBB constant can be expressed as
γ = min{|λm − ξ2|/λm} which in an average sense implies that γ is inversely proportional
to the wavenumber ξ, i.e. γ ∝ ξ−1 [6, 7]. Thus for high wavenumbers and for the case of
degeneracy (ξ →

√

λh
m) the LBB constant for the discrete problem tends to be small which

in turn leads to a loss of stability. The loss of stability with respect to an increase in the
wavenumber ξ is called the pollution effect which is impossible to avoid completely [9, 10].
Nevertheless the pollution effect can be controlled unlike the loss of stability for the case of
degeneracy where it is out of control.

Several stabilization methods were developed to control the pollution effect of the Galerkin
FEM. The Galerkin least squares (GLS) method was extended to the Helmholtz equation in
[11, 12]. In [11] the extension of the Galerkin gradient least squares (GGLS) method for
the current problem was also studied. In order to retain stability for problems that involve
the physics of both the convection–diffusion–reaction and Helmholtz equations the GLSGLS
method was proposed [13]. Following the framework of the Generalized Finite Element Meth-
ods (GFEM) which were first introduced in [14] in a variational setting, the Quasi-Stabilized
FEM (QSFEM) was proposed in [15]. To be precise, within an algebraic setting a 9-node
interior stencil was designed such that the pollution effect is asymptotically minimal, thus
leading to minimal phase error for arbitrary wave direction in 2D. The partition of unity
method (PUM) was proposed in [16, 17] by which conforming subspaces of higher regularity
can be generated out of a set of local approximation spaces. These local approximation spaces
could be designed to include a priori knowledge about the local behavior of the solution. Re-
cently, following the framework of PUM, a locally enriched FEM was proposed in [18] wherein
it was shown that the Bessel functions of the first kind could be used to enrich the finite ele-
ment space instead of the plane waves (as is done in PUM). Another stabilization approach
consists of enriching the classical finite element spaces by bubble functions. Following this line
the residual-free bubbles (RFB) method was extended to the Helmholtz equation in [19]. An-
other bubble-based method is the nearly optimal Petrov–Galerkin method (NOPG) presented
in [20]. A comparison of the RFB and NOPG methods for the Helmholtz equation was done
in [21]. Recently another GFEM was proposed in [22] in which the classical FEM is enriched
by plane waves pasted into the finite element basis at each mesh vertex by the PUM. Also, this
method allows the use of Cartesian meshes which may overlap the boundaries of the problem

1Ladyzhenskaya-Babuska-Brezzi constant
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domain. This GFEM was further developed in [23] wherein the effects of using alternative
handbook functions and mesh types is addressed. Based on the variational multiscale (VMS)
method several stabilization methods were proposed, viz. the sub-grid FEM [25], the two sub-
grid scale (SGS) models presented in [24], the residual-based FEM (RBFEM) [26] and more
recently, the algebraic subgrid FEM (ASGS) [27] and the SGS-GSGS method [28]. Following
the more general VMS method wherein the subscales are not modeled as bubbles, the RBFEM
method also includes the residuals on the inter-element boundaries while retaining the spar-
sity of the Galerkin method. As in the GLSGLS method, the SGS-GSGS method attempts to
stabilize the advection–diffusion–reaction/production problem and is designed to be nodally
exact in 1D. Within the framework of the discontinuous Galerkin (DG) method, the discon-
tinuous enrichment method (DEM) was proposed [29, 30] wherein the classical finite element
spaces are enriched (as in bubble-based methods) via a set of local approximation spaces (as
in the PUM-based methods). In the DEM, the continuity of the enrichment across element
boundaries is enforced weakly by Lagrange multipliers (unlike the PUM-based methods) and
it need not vanish at the element boundaries (unlike the bubble-based methods). Another
DG method is presented in [31] wherein the continuity of the finite element spaces across the
element edges is relaxed and weakly enforced via two penalty parameters corresponding to
possible jumps of the solution field and its gradient. These penalty parameters are designed
to minimize the pollution error. Following the ideas of the former DG method [31], another
discontinuous FEM was proposed in [32] (therein called as the DGB method). In the DGB
method the classical finite element spaces are enriched via bubbles that are allowed to be
discontinuous across subgrid patches. Following the DG method in [31] the continuity of the
bubble spaces across interior patch boundaries is enforced weakly via two penalty parameters
corresponding to possible jumps of the solution field and its gradient. Again, these penalty
parameters are designed to minimize the pollution error. Nodally exact Ritz discretization
of the 1D diffusion-absorption/production equations via variational finite calculus (FIC) and
modified equation methods using a single stabilization parameter were presented in [33]. The
Galerkin projected residual (GPR) method for the Helmholtz equation was presented in [34].
A survey of finite element methods for time-harmonic acoustics is done in [35].

Due to the abstractness in the definition of the QSFEM, it is often labeled as a finite differ-
ence method. Nevertheless, it provides solutions that are sixth-order accurate, i.e. O

(

(ξℓ)6
)

which is the best one can get on any compact stencil. Recently, a quasi-optimal Petrov–
Galerkin (QOPG) method using bilinear finite elements was proposed in [60] that recovers
the QSFEM stencil on square meshes. In the QOPG method the Galerkin FEM weights are
perturbed by a quadratic bubble function defined over the macro-element. The parameters
multiplying the bubble perturbations are found by solving local optimization problems in-
volving a functional of the local truncation error. Later, following this line, a quasi-optimal
finite difference method on generic unstructured meshes was proposed in [61].

Within the framework of the finite difference methods, several fourth-order compact
schemes obtained through a generalization of the fourth-order Padé approximation were stud-
ied in [56, 57]. Following this line, two new FDMs were proposed in [63] that achieves sixth
and eight-order accuracy respectively using a five-point (and hence non-compact) stencil in
1D. In [62] a new FDM with improved accuracy was proposed by modifying the central dif-
ference scheme (i.e. the classical FDM) by replacing the weight multiplying the central node
with an optimal expression that used the Bessel’s function of the first kind. The FLAME
method was proposed in [58] that exploits the use of local approximating functions to define
higher-order finite difference schemes on a chosen stencil. In particular on a compact stencil
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a sixth-order accurate scheme for the Helmholtz equation can be derived using the FLAME
method. Sixth-order accurate FD schemes on a compact stencil for the Helmholtz equation
were proposed in [59, 64, 65]. An alternate approach to derive FDMs is the global method of
differential quadrature (DQ) [66]. Following this line, a polynomial-based DQ and a Fourier
expansion-based DQ were derived for the Helmholtz equation in [67]. As higher-order polyno-
mial or sinusoidal interpolation functions are employed, these methods reduce the restriction
on the mesh resolution to the Nyquist limits, i.e. the rule of thumb for these methods is to
provide at least two elements per wavelength.

Some of the earlier works in the context of the Trefftz–Galerkin type methods could be
found in the seminal papers [36–39]. A treatise on Trefftz type methods can be found in
[40, 41]. Specifically, the Trefftz type methods were used for the Helmholtz equation in [42–
46]. The case of degeneracy, i.e. ξ → λh

m, is considered for the first time in [46] and the error
asymptote of the solution by the Trefftz method is given.

In this paper we present some observations and related dispersion analysis of a domain-
based fourth-order compact scheme for the Helmholtz equation. In other words, the phase
error of the numerical solution and the local truncation error of this scheme for plane wave
solutions diminish at the rate O

(

(ξℓ)4
)

. The focus is on the approximation of the Helmholtz
equation in the interior of the domain using compact stencils. The scheme consists in taking
the alpha-interpolation of the Galerkin finite element method (FEM) and the classical finite
difference method (FDM). This scheme has its origins in an old idea which marks the point of
departure: to replace the consistent mass matrix M in the Galerkin FEM by a higher-order
mass matrix M0.5 := (M + ML)/2, where ML is the lumped mass matrix. This idea was
proposed independently for eigenvalue problems by Goudreau [52, 53] and Ishihara [47]. In the
later work the matrix M0.5 was denominated as the mixed-mass matrix and as a concluding
remark the generalized mixed mass (GMM) scheme was proposed as an extension to the MM
scheme where an α-interpolation of the mass matrices is done, i.e. Mα := αM+ (1− α)ML.
This GMM scheme was later baptized as the alpha-interpolation method (AIM) [48] and was
extended to the hollow waveguide analysis in [49] and the Schrodinger equation in [50]. For
the simple 1D case our scheme mimics the AIM and in 2D making the choice α = 0.5 we
recover the generalized fourth-order compact Padé approximation [56, 57] (therein using the
parameter γ = 2).

The paper is organized as follows. In Section 2 we present the statement of the Helmholtz
equation viewed as a diffusion–production problem. This is done only to facilitate future
assimilation of ideas towards a generic method that would aim at stabilizing problems that
involve the physics of both the convection–diffusion–reaction and Helmholtz equations. In
Section 3 we present the analysis of the problem in 1D. The expressions for the numerical
solution of our scheme and its relative phase error are given considering a generic definition
of the parameter α given as a series expansion in terms of (ξℓ). A numerical example is given
that illustrates not only the approximation properties of our scheme but also throws light on
possible encounters with the zones of degeneracy. In Section 4 we present the 2D analysis
of a nonstandard compact stencil which results from a two-parameter scheme wherein α-
interpolations of the diffusion and production terms are done independently and it can model
several methods (including QSFEM). This nonstandard compact stencil has an additional
structure that reduces its abstractness and hence could be exploited for the extension of this
stencil to unstructured meshes (cf. Section 4.5). We follow [10, 15] for the analysis of this
stencil and its performance on square meshes is compared with that of the quasi-stabilized
FEM (QSFEM) [15]. Just like in 1D, we try to express the numerical solution of this stencil
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in 2D considering generic definitions of the parameters given as a series expansion in terms of
(ξℓ). Using this expression for the numerical solution, the expressions for the relative phase
and local truncation errors are given. In particular for our scheme, i.e. the α-interpolation
of the FEM and FDM stencils an optimal expression for the parameter α is given. The
dispersion plots in 2D and related discussion are done in Section 4.6. Some examples are
presented in Section 4.7 which illustrate the pollution effect through convergence studies in
the L2 norm, H1 semi-norm and the l∞ Euclidean norms. Finally in Section 5 we remark on
the extension of our scheme to unstructured meshes and arrive at some conclusions.

2 Problem statement

The statement of the multidimensional Helmholtz equation subjected to Dirichlet boundary
conditions is as follows:

R(φ) := k∆φ+ sφ+ f(x) = 0 in Ω (1a)

φ = φp on ΓD (1b)

where k > 0, s > 0 are the diffusion and production coefficients respectively, f(x) is the
source and φp is the prescribed value of φ at the Dirichlet boundary. When s < 0 the
Eq.(1) represents the diffusion-reaction problem that models the mass transfer processes with
first-order chemical reactions and wherein s represents the reaction coefficient.

The variational statement of the problem (1) can be expressed as follows: Find φ ∈ V
such that ∀w ∈ V0 we have,

a(w, φ) = l(w) (2a)

a(w, φ) :=

∫

Ω
(k∇w ·∇φ− swφ) dΩ (2b)

l(w) :=

∫

Ω
wf(x) dΩ (2c)

where, V := {w : w ∈ H1(Ω) and w = φp on ΓD} and V0 := {w : w ∈ H1(Ω) and w =
0 on ΓD}. The statement of the Galerkin method applied to the weak form (2) of the problem
is: Find φh ∈ V h such that ∀wh ∈ V h

0 we have,

a(wh, φh) = l(wh) (3)

where V h ⊂ V is a subspace obtained via any appropriate discretization. Discretization of
the space by finite elements will lead to the approximation φh = NaΦa and Eq.(3) reduces
into the following system of equations.

[

kD− sM
]

Φ = f (4a)

Dab =

∫

Ω
∇Na ·∇N b dΩ ; Mab =

∫

Ω
NaN b dΩ ; fa =

∫

Ω
Naf(x) dΩ (4b)
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3 Analysis in 1D

3.1 Introduction

In this section we study the homogeneous Helmholtz equation in 1D subjected to Dirichlet
boundary conditions. The problem (1) in 1D can be written as:

k
d2φ

dx2
+ sφ = 0 in Ω (5a)

φ(x = 0) = Φl ; φ(x = L) = Φr on ΓD (5b)

where L is the length of the 1D domain and Φl,Φr are the Dirichlet boundary data at the
left and right domain boundaries respectively. The solution to Eq.(5) when s > 0 is harmonic
and is expressed as:

φ(x) =
Φl sin(ξoL− ξox) + Φr sin(ξox)

sin(ξoL)
(6)

where ξo :=
√

s/k is the angular wave number. We also list the eigenvalues of this problem
which can be expressed as λm := (mπ/L)2 ∀ m ∈ {1, 2, 3, . . .}. The element contributions to
the matrices given in Eq.(4) using 2-node linear finite elements are,

De =
1

ℓ

[

1 −1
−1 1

]

; Me =
ℓ

6

[

2 1
1 2

]

(7)

where ℓ is the corresponding element length. If the discretization is uniform the equation
stencil for the problem (5a) corresponding to each interior node can be expressed as follows,

(

k

ℓ

)

(−Φi−1 + 2Φi − Φi+1)−
(

sℓ

6

)

(Φi−1 + 4Φi +Φi+1) = 0 (8)

If the mass matrix M is lumped then the equation stencil corresponding to any interior node
can be written as follows.

(

k

ℓ

)

(−Φi−1 + 2Φi − Φi+1)− sℓΦi = 0 (9)

This is also the stencil we get using the classical finite difference method2 (FDM).

3.2 α-Interpolation of the Galerkin-FEM and the classical FDM

Define a free parameter α and consider the α-interpolation of the stencils obtained by the
Galerkin FEM and the classical FDM methods for the problem (5):

(1− α)

[(

k

ℓ

)

(−Φi−1 + 2Φi − Φi+1)−
(

sℓ

6

)

(Φi−1 + 4Φi +Φi+1)

]

+α

[(

k

ℓ

)

(−Φi−1 + 2Φi − Φi+1)− sℓΦi

]

= 0

(10a)

⇒
(

k

ℓ

)

(−Φi−1 + 2Φi − Φi+1)− (1− α)

(

sℓ

6

)

(Φi−1 + 4Φi +Φi+1)− αsℓΦi = 0 (10b)

⇒
(

k

ℓ
− α

sℓ

6

)

(−Φi−1 + 2Φi − Φi+1)−
(

sℓ

6

)

(Φi−1 + 4Φi +Φi+1) = 0 (10c)

2by classical FDM we refer to the central difference scheme
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Remark: In 1D we can arrive at the above equations through an alternative argument:
Consider the Galerkin FEM method using the α-interpolated mass matrix Mα. The later
argument leads to the AIM. A particular case (taking α = 0.5) is the mixed-mass (MM)
scheme proposed by Ishihara applied to the Helmholtz equation [47]. The mixed-mass matrix
(M0.5) was earlier referred to as the higher-order-mass matrix by Goudreau [52]. In 1D a
stencil equivalent to the MM scheme will be obtained using the compact fourth-order Padé
approximation to problem (5) [56, 57].

We can guess that a solution to Eq.(10) takes the form Φi := φ(xi) = exp(iξhxi). Substi-
tuting this solution into Eq.(10) and defining λ := exp(iξhℓ) we get the characteristic equation
of the stencil:

λ2 − 2

(

6− (2 + α)ω

6 + (1− α)ω

)

λ+ 1 = 0 (11)

where ω := (sℓ2/k) = (ξoℓ)
2 is a dimensionless element number. The solution to Eq.(11) can

be expressed as follows.

λ := eiξ
hℓ = fα ±

√

(fα)2 − 1 = fα ± i
√

1− (fα)2 ; fα :=

(

6− (2 + α)ω

6 + (1− α)ω

)

(12)

Note that if |fα| ≤ 1 then the solution given by Eq.(12) is real (i.e. ξh ∈ R). This solution
can be expressed as a series expansion in terms of ω as follows:

ξhℓ = cos−1(fα) = cos−1

(

6− (2 + α)ω

6 + (1− α)ω

)

=
√
ω

[

1−
(2α− 1

24

)

ω +
(20α2 − 20α+ 9

1920

)

ω2

+
(280α3 − 420α2 + 378α− 103

193536

)

ω3 +O
(

ω4
)

]

(13)

Should the expression for α be written as a generic series expansion in terms of ω given
by α =

∑

∞

m=0 amωm, then the solution ξh can be written as shown below.

ξhℓ =
√
ω

[

1 +
(1− 2a0

24

)

ω +
(20a20 − 20a0 + 9

1920
+

a1
12

)

ω2

+
(280a30 − 420a20 + 378a0 − 103

193536
+

(2a0 − 1)a1
48

+
a1
12

)

ω3 +O
(

ω4
)

]

(14)

where am are coefficients independent of ω. The relative phase error of the above solution
can be expressed as shown below.

ξh − ξo
ξo

=
ξhℓ−√

ω√
ω

=

[

(1− 2a0
24

)

ω +
(20a20 − 20a0 + 9

1920
+

a1
12

)

ω2 +O
(

ω3
)

]

(15)

Note that for the choice a0 = 1/2, the relative phase error diminishes at the rate of O
(

ω2
)

or equivalently O
(

(ξoℓ)
4
)

. Further, making the choice a1 = −1/40, the relative phase error
now diminishes at the rate of O

(

ω3
)

or equivalently O
(

(ξoℓ)
6
)

. Fortunately in 1D it is possible
to choose α such that the solution given by Eq.(12) be nodally exact (i.e. ξhℓ = ξoℓ =

√
ω).

The expression for α that reproduces this effect, say αe, can be written as follows:

fαe
= cos(ξoℓ) = cos(

√
ω) ⇒ αe =

6

ω
−
(

2 + cos(
√
ω)

1− cos(
√
ω)

)

(16)
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The optimal parameter αe can be expressed as a series expansion in terms of ω as shown
in Eq.(17). Truncating the series up to the first n terms would yield a scheme whose relative
phase error diminishes at the rate of O

(

ωn+1
)

or equivalently O
(

(ξoℓ)
2n+2

)

.

αe ≈
1

2
− ω

40
− ω2

1008
− ω3

28800
− ω4

887040
− 691ω5

19813248000
+O

(

ω6
)

(17)

3.3 Dispersion plots in 1D

In this section we consider α ∈ {0, 1, 0.5, αe} and study their dispersion plots. The subscripts
c, l,m are flags used for the expressions obtained using α = {0, 1, 0.5} respectively. These
cases correspond for the stencils that arise using the consistent, lumped and mixed (higher-
order) mass matrices respectively. The subscript e is used to flag the choice α = αe, the
optimal expression for α, in order to attain nodally exact numerical solutions in 1D. For the
graphical representation of f(ω) and ξ(ω) we normalize some of these fields as follows:

ω∗ :=
ω

π2
; ξ∗ :=

ξ

ξnq
=

ξℓ

π
(18)

Restricting the domain to ω∗ ∈ [0, 1] guarantees that the Nyquist frequency3 of the dis-
cretization ((ξnq)) is always greater than the frequency of the exact solution (ξo). Thus for
every wave length of the harmonic solution we ensure the presence of at least two elements.
The Nyquist-Shannon sampling theorem states that this minimum resolution of the mesh is
essential to allow a perfect reconstruction of the solution using sinusoidal interpolation. How-
ever, using linear interpolation at least 4 elements per wavelength (ξoℓ ≤ (π/2) or ω∗ ≤ (1/4))
are needed to capture the sinusoidal profile. As a rule of thumb at least 8 to 10 elements per
wavelength are recommended for a decent representation of the solution using linear interpo-
lation [11, 54]. The latter resolution of the mesh is guaranteed by restricting the domain to
ω∗ ∈ [0, 1/16].

Figures 1a and 1b illustrate the plot of f(ω∗) for ω∗ ∈ [0, 1] and ω∗ ∈ [0, 1/4] respectively.
As expected a higher-order convergence of fm → fe is observed as ω∗ → 0. Also for both
the domains f(ω∗) ≤ 0 and in particular for the latter domain i.e. ω∗ ∈ [0, 1/4], we see that
|f(ω∗)| < 1. Figures 1c and 1d illustrate the plot of ξ∗(ω∗) for ω∗ ∈ [0, 1] and ω∗ ∈ [0, 1/4]
respectively. Whenever |f(ω∗)| > 1, Eq.(12) suggests that λ := exp(iξhℓ) ∈ R. This implies
that ξh is a complex number (ξh ∈ C) with the real part ℜ(ξh) = (nπ/ℓ), n ∈ {0, 1, 2, . . .} and
the imaginary part ℑ(ξ) 6= 0. As the Nyquist frequency in space is ξnq = π/ℓ, the real part is
either ℜ(ξh) = 0 for f(ω∗) ≥ 0 or ℜ(ξh) = (π/ℓ) for f(ω∗) < 0. Thus whenever |f(ω∗)| > 1
we find ℜ(ξh) = (π/ℓ), i.e. ℜ(ξh∗) = 1 (see Figure 1c). Also as ℑ(ξ) 6= 0 the numerical
solutions will be subjected to amplification intrinsic to the discretization (the one studied in
the von Neumann analysis). Finally, whenever |f(ω∗)| ≤ 1, the solution ξh is real (ξh ∈ R)
and all the considered schemes are devoid of any amplification intrinsic to the discretization.
In Figure 1d we observe that for ω∗ ∈ [0, 1/16], the graphs of ξ∗e and ξ∗m are indistinguishable.

3.4 Examples

We consider the problem defined in Eq.(5) with the following problem data: k = 1e-3, s = 1,
L = 1, Φl = 3, Φr = 1. Thus the exact solution of the problem given by Eq.(6) has an

3http://en.wikipedia.org/wiki/Nyquist frequency. Here frequency is to be understood in the spatial
context, i.e. the wavenumber
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Figure 1: Plots of f(ω∗) and ξ∗(ω∗). (a) Domain: ω∗ ∈ [0, 1] ; (b) Domain: ω∗ ∈ [0, 1/4] ; (c)
Domain: ω∗ ∈ [0, 1] ; (d) Domain: ω∗ ∈ [0, 1/4]
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ξo

√

λm−2

√

λm−1

√
λm

√

λm+1

√

λh
m−2

√

λh
m−1

√

λh
m

ξh

Figure 2: A schematic diagram that illustrates the encounter of a zone of degeneracy on mesh
refinement (ℓ → 0). As the value of

√

λh
m crosses ξo on its path towards

√
λm, the discrete

LBB constant takes values arbitrarily close to zero.

angular wave number ξo = 10
√
10. The discretization of the space is done by linear finite

elements and is uniform. We solve the problem using α ∈ {0, 1, 0.5} and the subscripts c, l,m
are used to flag them respectively. Four meshes of different resolution viz. 41, 81, 162 and
323 elements are considered. These meshes guarantee the presence of at least 8, 16, 32 and
64 elements per wavelength of the harmonic solution respectively. All the meshes restrict the
domain of ω∗ to [0,1/16].

Figure 3 illustrates the plots of the numerical solutions obtained using a consistent, lumped
and semi-lumped mass matrices denoted by Φc

h, Φ
l
h and Φm

h respectively, against the exact
solution of the problem denoted by Φa. In Figure 3a the solutions Φc

h and Φl
h are out-

of-phase and as expected the phase accuracy improves on mesh refinement (Figures 3b-d).
We observe a remarkable error in the amplitude of these solutions. Note that there is no
intrinsic amplification for all the schemes and the errors in the angular wave numbers ξ∗c , ξ

∗

l

are small (Figure 1d). The amplitude of the solution depends not only on the intrinsic
amplification of the scheme but also on the wave number ξ and on the applied Dirichlet
boundary conditions. Thus we may conclude that small errors in the wave number of the
computed solution may result in huge errors in their amplitude. An alternative explanation
to this behavior can be given via the following argument. First note that (

√
λ10 = 31.4159) <

(ξo = 10
√
10 = 31.6227) < (

√
λ11 = 34.5575). It is possible that the discrete eigenvalue

√

λh
10 for the initial course mesh/grid is greater than ξo and on further mesh refinement it

approaches
√
λ10 by crossing ξo. This explains the observation that the numerical solution

Φc
h on mesh refinement first explodes (as it enters the zone of degeneracy) and then gradually

converges to the exact solution. Figure 2 illustrates schematically4 the encounter of a zone
of degeneracy on mesh refinement (ℓ → 0) while as the value of

√

λh
m crosses ξo on its path

towards
√
λm. Nevertheless, the convergence of the discrete wavenumber (ξh → ξo) need not

be affected in this process. This argument also suggest that this phenomenon could have been
equally observed for the solutions Φl

h and Φm
h should their corresponding discrete eigenvalues

cross ξo.

On the other hand, the solution Φm
h could represent approximately the profile of the exact

solution even on the coarsest mesh (see Figure 3a). Figures 3b-d show that on further mesh
refinements Φm

h is indistinguishable from the analytical solution.

4A similar figure was presented earlier in [6] (c.f. Figure 1, pp. 74)
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Figure 3: Numerical solution Φh using a mesh with at least: (a) 8 elements per wave length ;
(b) 16 elements per wave length ; (c) 32 elements per wave length ; (d) 64 elements per wave
length. In figures (c) and (d) the solution Φm

h effectively coincides with the exact solution
and the solutions Φc

m and Φl
m bound the exact solution from above and below respectively.
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4 Analysis in 2D

4.1 Introduction

In multidimensions the general solution to the problem (1) considering a linear source f(x)
may be expressed as follows:

φ(x) =
f

s
+
∑

θ

Cθ exp(iξ
θ · x) (19a)

|ξθ| = ξo ⇒ ξθ := (ξθ1 , ξ
θ
2) = (ξo cos(θ), ξo sin(θ)) (19b)

where, Cθ represents a generic constant independent of the spatial coordinates. Generally it
is not possible to arrive at an expression for Cθ in the closed form. Nevertheless this detail is
not needed in the Fourier analysis of these problems. Eliminating θ from Eq.(19b) we arrive
at the characteristic equation of the continuous problem (1):

(ξθ1)
2 + (ξθ2)

2 = ξ2o (20)

4.2 Galerkin FEM using rectangular bilinear finite elements

The element contributions to the matrices given in Eq.(4) using 4-node rectangular bilinear
finite elements are,

De =
ℓ2
6ℓ1









2 −2 −1 1
−2 2 1 −1
−1 1 2 −2
1 −1 −2 2









+
ℓ1
6ℓ2









2 1 −1 −2
1 2 −2 −1

−1 −2 2 1
−2 −1 1 2









(21a)

Me =
ℓ1ℓ2
36









4 2 1 2
2 4 2 1
1 2 4 2
2 1 2 4









(21b)

where ℓ1, ℓ2 are the corresponding element lengths along the 2D axes. Restraining the dis-
cretization to be uniform, we can arrive at an equation stencil for every interior node of the
mesh. We use the following notation to represent a generic compact stencil obtained for the
(i, j) node on a rectangular grid.

{◦j+1, ◦j , ◦j−1}A{◦i−1, ◦i, ◦i+1}t = 0 (22)

where A represents the matrix of the stencil coefficients. For instance, if the standard mass
matrix obtained in the Galerkin FEM be assembled for a structured rectangular mesh then
we may express the stencil as follows:

Am :=
ℓ1ℓ2
36

{1, 4, 1}t {1, 4, 1} =
ℓ1ℓ2
36





1 4 1
4 16 4
1 4 1



 (23)

{◦j+1, ◦j , ◦j−1}Am{◦i−1, ◦i, ◦i+1}t := ℓ1ℓ2
36







(Φi−1,j+1 + 4Φi,j+1 +Φi+1,j+1)+
(4Φi−1,j + 16Φi,j + 4Φi+1,j)+
(Φi−1,j−1 + 4Φi,j−1 +Φi+1,j−1)







(24)
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We can guess that a solution to Eq.(22) takes the form Φi,j := φ(xi1, x
j
2) = exp[i(ξh1x

i
1 +

ξh2x
j
2)]. Substituting this solution into Eq.(22) and defining λ1 := exp(iξh1 ℓ1) and λ2 :=

exp(iξh2 ℓ2) we get the characteristic equation of the generic stencil(22):

{

λ2, 1, λ
−1
2

}

A
{

λ−1
1 , 1, λ1

}t
= 0 (25)

The stencil for the Galerkin FEM method corresponding to any interior node (i, j) can be
written as Eq.(22) with the following definition of the stencil coefficient matrix (A):

Afem :=
kℓ2
6ℓ1

{1, 4, 1}t {−1, 2,−1}+ kℓ1
6ℓ2

{−1, 2,−1}t {1, 4, 1}

− sℓ1ℓ2
36

{1, 4, 1}t {1, 4, 1}
(26)

The stencil for the classical FDM method corresponding to any interior node (i, j) can be
written as Eq.(22) with the following definition of A:

Afdm :=
kℓ2
6ℓ1

{0, 6, 0}t {−1, 2,−1}+ kℓ1
6ℓ2

{−1, 2,−1}t {0, 6, 0}

− sℓ1ℓ2
36

{0, 6, 0}t {0, 6, 0}
(27)

The characteristic equation associated with the stencil for the Galerkin FEM can be
written as Eq.(25) using the definition of A given by Eq.(26). Likewise the characteristic
equation associated with the stencil for the classical FDM can be written as Eq.(25) using
the definition of A given by Eq.(27).

4.3 A nonstandard compact stencil in 2D

Define two free parameters α1, α2 and consider the following definition of A:

Aα1,α2 := (1− α1)
kℓ2
6ℓ1

{1, 4, 1}t {−1, 2,−1}+ α1
kℓ2
6ℓ1

{0, 6, 0}t {−1, 2,−1}

(1− α1)
kℓ1
6ℓ2

{−1, 2,−1}t {1, 4, 1}+ α1
kℓ1
6ℓ2

{−1, 2,−1}t {0, 6, 0}

− (1− α2)
sℓ1ℓ2
36

{1, 4, 1}t {1, 4, 1} − α2
sℓ1ℓ2
36

{0, 6, 0}t {0, 6, 0}

(28)

Note that taking α1 = α2 = α we arrive at a stencil that is the α-interpolation of the FEM
and FDM stencils, i.e. Aα,α = (1−α)Afem+αAfdm. Likewise taking α1 = 0 and α2 = α we
arrive at a stencil that results from the Galerkin FEM method using an α-interpolated mass
matrix Mα := (1 − α)M + αML. We remark that unlike in 1D where both choices resulted
in the same stencil, in 2D the obtained stencils are different.

Next we relate this nonstandard stencil with the compact fourth-order Padé approximation
in 2D. A generalized version of the same was studied in [56, 57] and the associated stencil
coefficient matrix of the scheme Aγ can be expressed as follows:

Aγ := −k

[

{0, 1, 0}+ {1,−2, 1}
12

]t {1,−2, 1}
ℓ21

− k
{1,−2, 1}t

ℓ22

[

{0, 1, 0}+ {1,−2, 1}
12

]

− s

[

{0, 1, 0}+ {1,−2, 1}
12

]t [

{0, 1, 0}+ {1,−2, 1}
12

]

− s(γ − 1)
{1,−2, 1}t

12

{1,−2, 1}
12

(29)
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where γ is a free parameter. The standard compact fourth-order Padé scheme in 2D is
obtained by selecting γ = 1. Other alternatives viz. γ = 0 and γ = 2 were presented in
[51](cf. Appendix, Table VI, p.542). After some algebraic rearrangement, matrix Aγ given
in Eq.(29) can be re-written equivalently as follows:

Aγ :=
k

2

[{1, 4, 1}
6

+
{0, 6, 0}

6

]t {−1, 2,−1}
ℓ21

+
k

2

{−1, 2,−1}t
ℓ22

[{1, 4, 1}
6

+
{0, 6, 0}

6

]

− s

2

[

{1, 4, 1}t
6

{1, 4, 1}
6

+
{0, 6, 0}t

6

{0, 6, 0}
6

]

− s(γ − 2)
{1,−2, 1}t

12

{1,−2, 1}
12

(30)

Note that by selecting γ = 2 we obtain a stencil that is equivalent to the one obtained by
taking the average of the FEM and the FDM stencils. Thus,

A2 =
1

ℓ1ℓ2
A0.5,0.5 (31)

We now relate this nonstandard stencil for square meshes with the compact scheme pro-
posed by Vichnevetsky and Bowles [68] in order to reduce the anisotropy related to the
numerical dispersion. This scheme was studied in [54] and the conditions for appropriate
numerical isotropy were determined therein. Also, this scheme was used to synthesize an
equivalent transmission-line matrix (TLM) [69] model for the Maxwell’s equations in [70].
The associated stencil coefficient matrix Avb can be written as follows.

Avb :=
γk

ℓ2





0 −1 0
−1 4 −1
0 −1 0



+
(1− γ)k

2ℓ2





−1 0 −1
0 4 0

−1 0 −1



− s





0 0 0
0 1 0
0 0 0



 (32)

where γ is the associated interpolation parameter. Note that for γ = 1 we recover the classical
FDM (i.e. the second-order central difference scheme) and for γ = 0 we get a similar scheme
but with the stencil inclined at 45◦ and hence with the mesh size

√
2ℓ. Note that we recover

the Galerkin FEM contribution of the term −k∆φ by choosing γ = (1/3). Making the
substitution γ = (1 + 2α)/3 in Eq.(32) and after some algebraic rearrangement, matrix Avb

can be re-written equivalently as follows:

Avb := k

[

(1− α)

6
{1, 4, 1}+ α

6
{0, 6, 0}

]t {−1, 2,−1}
ℓ2

+ k
{−1, 2,−1}t

ℓ2

[

(1− α)

6
{1, 4, 1}+ α

6
{0, 6, 0}

]

− s
{0, 6, 0}t

6

{0, 6, 0}
6

(33)

This is precisely what we get using an α-interpolated (Galerkin FEM and classical FDM)
diffusion matrix in the classical FDM stencil. Thus, on square meshes we can relate Avb with
the nonstandard stencil as shown below.

Avb =
1

ℓ2
Aα,1 (34)

Using the definition of A given by Eq.(28), the characteristic equation associated to the
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resulting stencil is given by Eq.(35) and on simplification we arrive at Eq.(36).

{

λ2, 1, λ
−1
2

}

Aα1,α2

{

λ−1
1 , 1, λ1

}t
= 0 (35)

⇒
(

[(1− α1)(λ
2
2 + 4λ2 + 1) + 6α1λ2](−1 + 2λ1 − λ2

1)

6ω1

)

+

(

(−λ2
2 + 2λ2 − 1)[(1− α1)(1 + 4λ1 + λ2

1) + 6α1λ1]

6ω2

)

−
(

[(1− α2)(λ
2
2 + 4λ2 + 1)(1 + 4λ1 + λ2

1) + 36α2λ2λ1]

36

)

= 0

(36)

where ω1, ω2 are two dimensionless element numbers defined as follows:

ω1 :=
sℓ21
k

= (ξoℓ1)
2 ; ω2 :=

sℓ22
k

= (ξoℓ2)
2 (37)

Unlike in 1D, the characteristic equations of the stencils in 2D have infinite solutions
(fundamental frequencies (ξh1 , ξ

h
2 )) for every (ω1, ω2) pair. For every choice of the pair (ω1, ω2),

these solutions will trace well-defined contours in the ξh1 − ξh2 plane. The solutions to Eq.(36)
are symmetric about the origin and the axes. This statement can be easily verified due to
the fact that by replacing the pair (λ1, λ2) with (λ±1

1 , λ±1
2 ) in Eq.(36) we end up in the same

equation. Thus we may conclude that if (ξh1 , ξ
h
2 ) is a solution to Eq.(36) then (±ξh1 ,±ξh2 )

are also solutions to the same. Obviously this statement also extends to the characteristic
equation of the continuous problem (20) which additionally has a rotational symmetry (i.e.
if (ξθ1 , ξ

θ
2) is a solution then (ξθ2 , ξ

θ
1) is also a solution). These contour lines are circular for the

continuous problem and their radius equals to the chosen ξo value. Rotational symmetry for
the solution (ξh1 , ξ

h
2 ) is attained should the element lengths be the same, i.e. ℓ1 = ℓ2 = ℓ. In

this case the stencil coefficient matrix Aα1,α2 is symmetric and after scaling down by k it can
be expressed as follows:

Aα1,α2

k
=





A2 A1 A2

A1 A0 A1

A2 A1 A2





α1,α2

;

Aα1,α2

0 :=
8

3
− 4ω

9
+

4α1

3
− 5ωα2

9

Aα1,α2

1 := −1

3
− ω

9
− 2α1

3
+

ωα2

9

Aα1,α2

2 := −1

3
− ω

36
+

α1

3
+

ωα2

36

(38)

where, ω := (sℓ2/k) = (ξoℓ)
2.

Finally we relate this nonstandard stencil with methods that have a symmetric stencil
coefficient matrix Asym defined as:

Asym :=





A2 A1 A2

A1 A0 A1

A2 A1 A2



 (39)

Let g1 = (4A1/A0) and g2 = (4A2/A0) and if (g1 + g2 + 1) 6= 0 then we can obtain Asym

(possibly scaled by a factor) from Aα1,α2 by selecting α1 and α2 as follows:

α1 :=
4(g1 + g2 + 1) + ω(g1 − 4g2)

8(g1 + g2 + 1)
; α2 :=

12(g1 + g2 + 1) + ω(2− g1 − 4g2)

2ω(g1 + g2 + 1)
(40)
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P :=
√
ω(cosβ, sinβ)

Ph := R(β, ω)(cos β, sinβ)

R(β, ω) :=
√
ω

[

1 +
∞
∑

m=1

rm(β)ωm

]

ξh1 ℓ

ξh2 ℓ

Figure 4

For instance consider the QSFEM method [15] for which the expressions for g1 and g2 can be
written as shown below.

g1 :=
2(c1s1 − c2s2)

c2s2(c1 + s1)− c1s1(c2 + s2)
; g2 :=

(c2 + s2 − c1 − s1)

c2s2(c1 + s1)− c1s1(c2 + s2)
(41a)

c1 := cos
[√

ω cos
( π

16

)]

c2 := cos

[√
ω cos

(

3π

16

)]

s1 := cos
[√

ω sin
( π

16

)]

s2 := cos

[√
ω sin

(

3π

16

)] (41b)

4.4 Numerical solution, phase error and local truncation error

In this section we will deal only with the case when ℓ1 = ℓ2 = ℓ. Here we present the solution
to Eq.(36) for a given α1, α2 expressed as a generic series expansion in terms of ω as follows:

α1 :=
∞
∑

m=0

amωm ≈ a0 + a1ω + a2ω
2 + a3ω

3 +O
(

ω4
)

(42a)

α2 :=
∞
∑

m=0

bmωm ≈ b0 + b1ω + b2ω
2 + b3ω

3 +O
(

ω4
)

(42b)

where am, bm are coefficients independent of ω. Following [10, 15] the solution ξh := (ξh1 , ξ
h
2 )

can also be expressed as a series expansion in terms of ω:

{

ξh1 ℓ
ξh2 ℓ

}

= R(am, bm, β, ω)

{

cos(β)
sin(β)

}

(43a)

R :=
√
ω

[

1 +
∞
∑

m=1

rm(ai, bi, β)ω
m

]

≈
√
ω
[

1 + r1ω + r2ω
2 + r3ω

3 +O
(

ω4
)]

(43b)

where, rm are coefficients independent of ω and will be determined later in this section. Recall
that the numerical solution in 1D given by Eq.(13) or Eq.(14) obeys the above series expansion
in terms of ω. Figure 4 illustrates schematically the contour traced by the numerical solution
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P h(ξh1 ℓ, ξ
h
1 ℓ) and compares it with the contour of the exact solution P (ξβ1 ℓ, ξ

β
1 ℓ). In [10, 15] the

denomination ‘dist(β)’ was used for the distance between P h and P , i.e. dist(β) := R−√
ω.

Therein ‘dist(β)’ was used as a measure of the approximation quality of the solution and from
it error estimates were derived that bound the solution from below. The relative phase error
of the solution along any direction β is given by,

‖ξh‖ − ‖ξβ‖
‖ξβ‖

=
R−√

ω√
ω

=
dist(β)√

ω
=

∞
∑

m=1

rm ωm ≈
[

r1ω + r2ω
2 + r3ω

3 +O
(

ω4
)]

(44)

Substituting P h(ξh1 ℓ, ξ
h
2 ℓ) into the stencil corresponding to Aα1,α2 given in Eq.(38) we get:

Aα1,α2

0 + 2Aα1,α2

1 [cos(R cosβ) + cos(R sinβ)] + 4Aα1,α2

2 cos(R cosβ) cos(R sinβ) = 0 (45)

Using the definitions of α1, α2 and R given in Eq.(42) and Eq.(43b) respectively, the left
hand side (LHS) of Eq.(45) can be expanded as a series in terms of ω as shown in Eq.(46a).
The first four coefficients of this series can be expressed as shown in Eq.(46b) and Eq.(46c)
respectively.

LHS =
∞
∑

m=0

Sm(ai, bj , rk, β)ω
m (46a)

S0 = S1 = 0 ; S2 = 2r1 +

(

3 + 2a0 − 8b0
48

)

+

(

1− 2a0
48

)

cos(4β) (46b)

S3 = 2r2 + r21 +

(

2a0 − 4b0 − 1

12

)

r1 +

(

24a1 − 96b1 − 2a0 + 8b0 − 5

576

)

+

[(

10a0 − 7− 120a1
2880

)

+

(

1− 2a0
12

)

r1

]

cos(4β)

(46c)

The local truncation error of the solution along any direction β is found by substituting
the exact solution P (ξβ1 ℓ, ξ

β
2 ℓ) into the stencil corresponding to Aα1,α2 given in Eq.(38). This

is equivalent to substituting rk = 0 ∀ k in the expression for LHS given in Eq.(46a). Thus
using the result S0 = S1 = 0, the relative truncation error T along any direction β is given
by:

T :=
LHS|P

ω
=

∞
∑

2

Sm(ai, bj , rk = 0, β)ωm−1 ≈
[

S2ω + S3ω
2 + S4ω

3 +O
(

ω4
)]

(47)

We now present the expressions for the unknowns rk. Clearly all the coefficients Sm should
be zero for Eq.(45) to hold. We can solve for the unknowns rk by imposing the conditions
Sm = 0 ∀ m. Thus the first two unknowns in Eq.(43b) viz. r1 and r2 can be expressed as
follows:

r1 = −
(

3 + 2a0 − 8b0
96

)

−
(

1− 2a0
96

)

cos(4β) (48a)

r2 = −r21
2

−
(

2a0 − 4b0 − 1

24

)

r1 −
(

24a1 − 96b1 − 2a0 + 8b0 − 5

1152

)

−
[(

10a0 − 7− 120a1
5760

)

+

(

1− 2a0
24

)

r1

]

cos(4β)

(48b)
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Note that we obtain the condition r1 = 0 if and only if a0 and b0 satisfy the condition
a0 = b0 = (1/2). Further we obtain the condition r2 = 0 if and only if a1 and b1 satisfy the
condition a1 = (−1/60) and b1 = (−1/40). For these choices of a0, a1, b0 and b1 the first five
coefficients in {Sm} can be simplified as follows:

S0 = S1 = 0 ; S2 = 2r1 ; S3 = 2r2 + r21 −
r1
6

(49a)

S4 = 2r3 + 2r2r2 −
r2
6

− r1
720

− 5r21
12

−
[

5

55296
−
(

a2 − 4b2
24

)

+

(

1 + 576a2
13824

)

cos(4β) +
cos(8β)

387072

] (49b)

Likewise, by imposing the condition S4 = 0 the unknown r3 in Eq.(43b) can be simplified to
the following:

r3 =

[

5

110592
−
(

a2 − 4b2
48

)

+

(

1 + 576a2
27648

)

cos(4β) +
cos(8β)

774144

]

(50)

Clearly it is impossible to obtain the condition r3 = 0 and this fact was pointed out earlier
in [10, 15]. To conclude this section we summarize the salient results. The parameters α1

and α2 that appear in Aα1,α2 can be chosen such that the numerical solution be sixth-order
accurate, i.e. O

(

(ξoℓ)
6
)

or equivalently O
(

ω3
)

. Recall that this is the maximum order of
accuracy that can be attained on any compact stencil [10, 15]. All such α1 and α2 should
obey the following series expansion in terms of ω.

α1 =
1

2
− ω

60
+

∞
∑

m=2

amωm ; α2 =
1

2
− ω

40
+

∞
∑

m=2

bmωm (51)

The relative phase and local truncation errors of these schemes can be expressed as follows:

‖ξh‖ − ‖ξβ‖
‖ξβ‖

= r3ω
3 +O

(

ω4
)

; T = −2r3ω
3 +O

(

ω4
)

(52)

where r3 is given in Eq.(50). As am, bm (m ≥ 2) can be chosen arbitrarily, infinitely many
sixth-order schemes can be designed through Aα1,α2 . Of course some particular choice of
am, bm may yield a scheme with better features. For instance, am, bm may be chosen such
that the local truncation error T be zero along some chosen directions.

4.5 α-Interpolation of the FEM and the FDM in 2D

In this section we consider the case α1 = α2 = α, that results in a scheme which is the
α-interpolation of the FEM and the FDM stencils. Here the coefficients am = bm ∀ m. Recall
that a necessary condition to obtain a sixth-order scheme is a1 = (−1/60) and b1 = (−1/40).
Thus an immediate consequence is that this α-interpolation scheme can be at the best fourth-
order accurate. Nevertheless, a compromise to the loss in accuracy is that the condition α1 =
α2 = α imposes an additional structure to the scheme that may be exploited. For instance,
this additional structure might throw light on the extension of this scheme to unstructured
meshes. Precisely, should it be possible to design a Petrov–Galerkin method that would yield
the FDM stencil on a structured mesh, then this scheme can be extended to unstructured
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meshes in a straight-forward manner. We show that indeed it is possible to design such a
Petrov–Galerkin method using just the lowest-order block finite elements [71].

We now discuss the salient features of this scheme, i.e. the case α1 = α2 = α. It is possible
to choose α such that the local truncation error along any direction θ be zero. Let this choice
be denominated as αθ and it can be expressed as follows:

αθ :=
6(cθ + sθ + 2cθsθ − 4) + ω(2cθ + 2sθ + cθsθ + 4)

12(1− cθ − sθ + cθsθ) + ω(2cθ + 2sθ + cθsθ − 5)
;

cθ := cos(
√
ω cos(θ))

sθ := cos(
√
ω sin(θ))

(53)

Note that choosing θ = 0 we would recover the expression for α given in Eq.(16) which
results in solutions that are nodally exact in 1D. The expression for αθ can be written as a
series expansion in terms of ω as shown below:

αθ =
∞
∑

m=0

amωm ≈ 1

2
−
[

5 + cos(4θ)

3 + cos(4θ)

]

ω

60
−
[

35 + 28 cos(4θ) + cos(8θ)

3 + cos(4θ)

]

ω2

16128
+O

(

ω3
)

(54)

Recall that the choice a0 = (1/2) will make the coefficient r1 = 0 and hence using the
expression for αθ we will always obtain fourth-order accurate solutions on uniform meshes.
The expression for the coefficient r2 given in Eq.(48b) can now be simplified to the following.

r2 =
1

1440

[

cos(4θ)− cos(4β)

3 + cos(4θ)

]

(55)

The relative phase and local truncation errors of this scheme can be expressed as follows:

‖ξh‖ − ‖ξβ‖
‖ξβ‖

= r2ω
2 +O

(

ω3
)

; T = −2r2ω
2 +O

(

ω3
)

(56)

where r2 is given in Eq.(55). So far the direction θ, along which the local truncation error is
made zero, is arbitrary. We now try to optimize the solution error with respect to θ. Ideally
the function to optimize could be either the relative phase or local truncation errors and the
optimization problem can be posed as follows:

min
θ

max
β

|T| (or) min
θ

max
β

∣

∣

∣

∣

∣

‖ξh‖ − ‖ξβ‖
‖ξβ‖

∣

∣

∣

∣

∣

(57)

Unfortunately, this is a difficult problem to solve in the closed form as it is a nonlinear
function of ω and the location of the minimum might vary with ω. We conjuncture that in
the pre-asymptotic range (i.e. ξoℓ ≪ 1 or equivalently ω ≪ 1) the location of the minimum
in the θ− β space is independent of ω. Thus, under this assumption the minimization of the
relative phase or local truncation errors is essentially equivalent to the minimization of the
coefficient of the lowest order term, i.e. here r2. Hence we choose to optimize the coefficient
r2 instead. The redefined problem and its solution is given below.

min
θ

max
β

|r2| = min
θ

max
β

| cos(4θ)− cos(4β)|
1440(3 + cos(4θ))

= min
θ

1 + | cos(4θ)|
1440(3 + cos(4θ))

=
1

4320
(58a)

max
β

occurs at | cos(4β)| = 1 ⇒ β =
mπ

4
; m = {0, 1, 2, . . .}

min
θ

occurs at | cos(4θ)| = 0 ⇒ θ =
(2n+ 1)π

8
; n = {0, 1, 2, . . .}

(58b)
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Thus, for a given θ the maximum error in the stencil will be found for some β ∈
{0, (π/4), (π/2)}. That maximum error along the direction β takes a minimum value should
the chosen direction (where the truncation error is made zero) be some θ ∈ {(π/8, 3π/8)}.
Note that due to the inherent symmetries in the stencil the expressions for α(π/8) and α(3π/8)

are equivalent.

4.6 Dispersion plots in 2D

For a feasible graphical representation and comparison of the solutions to the characteristic
equations we plot the ξ1−ξ2 contours for some values of (ω1, ω2) only. Here and henceforth the
superscripts {θ, h} are dropped in order to refer to the contour plots of both the continuous
and discrete problems simultaneously. In order to retain generality to the plots the quantities
ω1, ω2, ξ

θ
1 , ξ

θ
2 , ξ

h
1 and ξh2 are normalized as follows:

ω∗

1 :=
ω1

π2
; ξθ∗1 :=

ξθ1
ξnq1

=
ξθ1ℓ1
π

; ξh∗1 :=
ξh1
ξnq1

=
ξh1 ℓ1
π

(59a)

ω∗

2 :=
ω2

π2
; ξθ∗2 :=

ξθ2
ξnq2

=
ξθ2ℓ2
π

; ξh∗2 :=
ξh2
ξnq2

=
ξh2 ℓ2
π

(59b)

⇒ λ1 := eiξ
h

1
ℓ1 = eiπξ

h∗

1 ; λ2 := eiξ
h

2
ℓ2 = eiπξ

h∗

2 (59c)

where ξnq1 , ξnq2 are the Nyquist frequencies of the discretization along the 2D axes. Using these
normalized quantities the characteristic equations of the continuous and discrete problems
given by Eq.(20) and Eq.(36) can be expressed as Eq.(60) and Eq.(61) respectively.

(ξθ∗1 )2

ω∗
1

+
(ξθ∗2 )2

ω∗
2

= 1 (60)

(

[(1− α1)(λ
2
2 + 4λ2 + 1) + 6α1λ2](−1 + 2λ1 − λ2

1)

6π2ω∗
1

)

+

(

(−λ2
2 + 2λ2 − 1)[(1− α1)(1 + 4λ1 + λ2

1) + 6α1λ1]

6π2ω∗
2

)

−
(

[(1− α2)(λ
2
2 + 4λ2 + 1)(1 + 4λ1 + λ2

1) + 36α2λ2λ1]

36

)

= 0

(61)

For every choice of the pair (ω∗
1, ω

∗
2) the solution to Eq.(60) will trace elliptic contours

with the center at the origin in the ξ∗1 − ξ∗2 plane. Due to the inherent symmetry of the
solutions the dispersion plots are presented just in the first quadrant. Similar to 1D, we
require that the Nyquist frequencies of the discretization in 2D are always greater than the
frequencies of the exact solution, i.e. min{ξnq1 , ξnq2 } ≥ ξo. Note that the following expressions
are equivalent (≡): min{ξnq1 , ξnq2 } ≡ max{ℓ1, ℓ2} ≡ max{ω∗

1, ω
∗
2}. Thus restricting the domain

to max{ω∗
1, ω

∗
2} ∈ [0, 1] guarantees this requirement :

ω∗ := max{ω∗

1, ω
∗

2} ∈ [0, 1] ⇔ min{ξnq1 , ξnq2 } ≥ ξo (62)

Likewise, a mesh resolution of at least 8 elements per wavelength is guaranteed by re-
stricting the domain to ω∗ ∈ [0, 1/16]. We study the following four cases concerned with the
choice of the (α1, α2) pair:
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I: α1 = α2 = (1/2). This case corresponds to the equation stencil associated with
A0.5,0.5 := (Afem + Afdm)/2. Thus the discrete system obtained here is the average
of the systems obtained from the Galerkin FEM and the classical FDM. Recall that we
can also obtain this stencil using the generalized Padé approximation in 2D and choosing
the parameter γ = 2.

II: α1 = α2 = αθ and θ = 0. This case corresponds to the α-interpolation of the Galerkin
FEM and the classical FDM. The local truncation error is zero along the direction θ = 0
whenever ℓ1 = ℓ2.

III: α1 = α2 = αθ and θ = (π/8). This case also corresponds to the α-interpolation of
the Galerkin FEM and the classical FDM. The local truncation error is zero along the
direction θ = (π/8) whenever ℓ1 = ℓ2. Recall that choosing θ = (π/8) leads to an
optimized expression for the coefficient r2.

IV: QSFEM, α1 6= α2 6= 0 and given by Eq.(40) and Eq.(41). This case corresponds to
the quasi-stabilized FEM presented in [15]. The local truncation error is zero along the
directions θ = (π/16) and θ = (3π/16) whenever ℓ1 = ℓ2.

Note that for cases I,II and III the relative phase and local truncation errors of the
numerical solution diminish at a fourth-order rate i.e O

(

(ξoℓ)
4
)

or equivalently O
(

ω2
)

. For
the case IV, i.e the QSFEM, these errors diminish at a sixth-order rate i.e O

(

(ξoℓ)
6
)

or
equivalently O

(

ω3
)

.

In Figures 5 and 6 we plot the solutions to the characteristic equations of the continuous
and discrete problems given by Eq.(60) and Eq.(61) respectively. The contours of the con-
tinuous problem are drawn using the dashed line-style and the corresponding contour value
displayed in a single text-box. Labeled solid line-style is used to display the contours of
the discrete problem. Each figure is further divided into four sub-figures viz. (a)-(d) which
correspond to the considered four cases I–IV. Within each sub-figure the contours plots of
the continuous and discrete problems are plotted and compared. In Figure 5 we plot the
ξ∗1 − ξ∗2 contours keeping ω∗

1 = ω∗
2 i.e. ℓ1 = ℓ2. The plotting domain considered here is

(ξ∗1 , ξ
∗
2) = [0, 0.55] × [0, 0.55]. In Figure 6 we plot the ξ∗1 − ξ∗2 contours keeping ω∗

2 = 0.49ω∗
1

i.e. ℓ2 = 0.7ℓ2. The plotting domain considered here is again (ξ∗1 , ξ
∗
2) = [0, 0.55] × [0, 0.55].

In both the figures, contours are drawn for the values of ω∗ ∈ {(1/4), (1/9), (1/16), (1/25)}.
These values of ω∗ guarantee the presence of at least four, six, eight and ten elements per
wavelength respectively. Note that except for the contour value ω∗ = (1/4) in case I, the rest
of the contours of the numerical solution are indistinguishable from their continuous counter-
parts. This is due to the fact that the relative local truncation error is of the order of 1e-3
which is small with respect to the scale of the plotting domain.

In order to quantify better the relative local truncation errors of the solutions, we compare
them in Figure 7. This figure is further divided into four sub-figures viz. (a)-(d) which corre-
spond to the considered four values of ω∗ respectively, i.e. ω∗ ∈ {(1/4), (1/9), (1/16), (1/25)}.
Within each sub-figure the relative local truncation errors of the considered four cases viz.
I–IV are plotted vs. the direction β. Now we can clearly distinguish the errors related to the
four cases. However in these figures the error associated with the case IV, i.e. the QSFEM
is indistinguishable from zero at this scale. In Figure 8 the relative local truncation errors
of the solutions are plotted in the log-scale. The sub-figures are organized just like in Figure
7. Note that in figures 7 and 8 the relative local truncation errors converge monotonically
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Figure 5: ξ∗1 − ξ∗2 contours for ω∗ ∈ {(1/4), (1/9), (1/16), (1/25)} and ω∗
1 = ω∗

2. The dashed
and solid line-styles correspond to the solutions of the continuous and discrete problems
respectively. (a) Case I: α1 = α2 = 0.5 ; (b) Case II: α1 = α2 = αθ and θ = 0 ; (c) Case III:
α1 = α2 = αθ and θ = (π/8) ; (d) Case IV: QSFEM, α1 6= α2 6= 0 and given by Eq.(40) and
Eq.(41)
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Figure 6: ξ∗1 − ξ∗2 contours for ω∗ ∈ {(1/4), (1/9), (1/16), (1/25)} and ω∗
2 = 0.49ω∗

1. The
dashed and solid line-styles correspond to the solutions of the continuous and discrete problems
respectively. (a) Case I: α1 = α2 = 0.5 ; (b) Case II: α1 = α2 = αθ and θ = 0 ; (c) Case III:
α1 = α2 = αθ and θ = (π/8) ; (d) Case IV: QSFEM, α1 6= α2 6= 0 and given by Eq.(40) and
Eq.(41)
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with respect to ω∗, i.e. the plots of the errors with respect to the direction β maintain their
shape. This supports the conjuncture made in Section 4.5 that in the pre-asymptotic range
the location of the mini-max error is independent of ω∗. Also we note that choosing θ = (π/8)
in the expression for αθ, the maximum error is less than the one choosing θ = 0.

4.7 Examples

We consider the problem defined by Eq.(1) with the following problem data: k ∈ {1e-3, 1e-4},
s = 1, f = 0 and the domain Ω = [0, 1]×[0, 1]. The Dirichlet boundary conditions are assigned
such that the exact solution of Eq.(1) is φ(x) = sin(ξβ · x), where β is the chosen direction
of wave propagation, ξβ := ξo(cos(β), sin(β)) and ξo :=

√

s/k. Thus for the chosen values
of k, the wavenumber ξo takes the values in {10

√
10, 100}. The following wave directions

are considered: β ∈ {(π/9), (π/4)}. Seven uniform meshes (ℓ1 = ℓ2) of different resolution
are considered such that there are at least four, six, eight, ten, twelve, fourteen and sixteen
elements per wavelength respectively. If the element length is chosen such that there are
exactly n elements per wavelength, then the value of ξ∗ = (2/n) and ω∗ = (2/n)2. As it can
be seen all these meshes restrict the domain of ω∗ to [0, 1/4]. For these considerations we
study the convergence of the relative error in the following error norms:

L2 norm
‖φ− φh‖0

‖φ‖0
:=

[
∫

Ω(φ− φh)
2 dΩ]1/2

[
∫

Ω φ2 dΩ]1/2
(63a)

H1 semi-norm
‖φ− φh‖1

‖φ‖1
:=

[
∫

Ω∇(φ− φh) ·∇(φ− φh) dΩ]
1/2

[
∫

Ω∇φ ·∇φ dΩ]1/2
(63b)

l∞ Euclidean norm
|Φe − Φh|∞

|Φe|∞
:=

maxi |Φi
e − Φi

h|
maxi |Φi

e|
(63c)

In the convergence studies done here, the numerical solutions corresponding to the four
cases viz. I–IV, are compared with the following solutions: the nodally exact interpolant
denoted by Ihφ and the best approximations with respect to the L2 norm and the H1 semi-
norm denoted by P 0

hφ and P 1
hφ respectively. The solutions Ihφ, P

0
hφ and P 1

hφ can be found
as shown in Eq.(64).

Ihφ := NaΦa
e (64a)

∫

Ω
wh(φ− P 0

hφ) dΩ = 0 ∀ wh ∈ V h
0 ⇒ ‖ φ− P 0

hφ ‖0 ≤ ‖ φ− φh ‖0 ∀ φh ∈ V h (64b)

∫

Ω
∇wh ·∇(φ− P 1

hφ) dΩ = 0 ∀ wh ∈ V h
0 ⇒ ‖ φ− P 1

hφ ‖1 ≤ ‖ φ− φh ‖1 ∀ φh ∈ V h (64c)

As here the exact solution is sinusoidal, we have used a third-order Gauss quadrature
rule to evaluate the expressions in Eq.(63) and Eq.(64). Figures 9a and 9b illustrate the
convergence of the relative error considering the wavenumber ξo = 10

√
10 ≈ 31.62, the wave

direction β = (π/9) and using the L2 norm and H1 semi-norm respectively. Figures 9c and
9d illustrate the same but now considering the wave direction β = (π/4). Clearly the errors
in the L2 norm and H1 semi-norm corresponding to all the cases are greater than that of
the respective best approximations. The error lines corresponding to the cases II–IV show a
convergence trend indistinguishable from the error line of Ihφ. On coarse meshes the error
line corresponding to case I deviates significantly from the error line of Ihφ. Nevertheless, it
quickly recovers the convergence trend of the later on finer meshes.
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Figure 7: Relative local truncation error plots using ℓ1 = ℓ2. Comparisons are made for the
considered four cases viz. I–IV and for (a) ω∗ = (1/4) ; (b) ω∗ = (1/9) ; (c) ω∗ = (1/16) ; (d)
ω∗ = (1/25)
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Figure 8: Log-scaled relative local truncation error plots using ℓ1 = ℓ2. Comparisons are
made for the considered four cases viz. I–IV and for (a) ω∗ = (1/4) ; (b) ω∗ = (1/9) ; (c)
ω∗ = (1/16) ; (d) ω∗ = (1/25)
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Figures 10a and 10b illustrate the convergence of the relative error considering the wavenum-
ber ξo = 100, the wave direction β = (π/9) and using the L2 norm and H1 semi-norm re-
spectively. Figures 10c and 10d illustrate the same but now considering the wave direction
β = (π/4). Note that a higher value of ξo introduces the ‘pollution-effect’ in the error lines
as they deviate more from the error line of Ihφ. However the pollution effect is very small for
cases II and III and is practically nil for case IV (sixth-order dispersion accuracy).

Figure 11 illustrates the convergence of the relative error in the l∞ Euclidean norm. As
a nodally exact solution requires that the dispersion error be zero, one may expect that the
order of convergence in the l∞ Euclidean norm be the same as that of the corresponding
dispersion error. In fact the same is observed for the solutions corresponding to all the cases.
The error lines of cases I–III converge at a fourth-order rate and that of case IV converges at a
sixth-order rate. The error lines of the best approximations in the L2 norm (P 0

hφ) and the H1

semi-norm (P 1
hφ) converge at a second-order rate. The relative error of P 0

hφ is always greater
that that of P 1

hφ. The pollution effect is now clearly visible for all the cases. Irrespective
of the wave direction β, the error lines of all the cases shift higher with an increase in the
wavenumber ξo. Meanwhile, the location of the error lines of P 0

hφ and P 1
hφ are practically

unaffected by an increase in ξo (no pollution). As the magnitudes of the relative error in the
l∞ Euclidean norm for cases II–IV is small (with respect to relative error of Ihφ in the the L2

norm and the H1 semi-norm) for both the values of ξo, the pollution effect is hardly visible
for these cases considering the relative error in the L2 norm and the H1 semi-norm.

Remark: As discussed in Section 3.4 and pointed out earlier in [6], though the discrete
LBB constant in an average sense is inversely proportional to ξo, it has a more complicated
behavior that tends its value to zero should ξo approach the zones of degeneracy (see Figure
2). Thus pollution effects may be found not only for higher wavenumbers but also in those
situations where the wavenumber ξo approaches the zones of degeneracy. Of course, the
higher the dispersion accuracy the closer will be the discrete eigenvalues to their continuous
counterparts and narrower will be the zones of degeneracy. Also, if only the Dirichlet boundary
conditions are prescribed (as is the case here), spurious amplitude and/or phase modulations
might occur to satisfy them in spite of small dispersion errors [11]. For the presented scheme,
we have found vestiges of this behavior along the wave direction β = 0.

5 Conclusions and Outlook

A fourth-order compact scheme on structured meshes is presented for the Helmholtz equation.
The scheme consists in taking the α-interpolation of the Galerkin FEM and the classical
FDM. For the 2D analysis of this scheme a generic nonstandard compact stencil involving two
parameters α1, α2 is considered. In particular this nonstandard compact stencil can model the
aforementioned scheme (choosing α1 = α2 = α) and also the QSFEM which has a dispersion
accuracy of sixth-order. The expression for the numerical solution of this nonstandard stencil
is given considering generic expressions for α1, α2 written as a series expansion in terms of
ω := (ξoℓ)

2. Using this result, we provide the expressions for the phase and local truncation
errors of this nonstandard compact stencil. In particular for our scheme it is shown that these
errors diminish at the rate O

(

(ξoℓ)
4
)

or equivalently O
(

ω2
)

. An expression for the parameter
α is given that minimizes the relative phase error in the pre-asymptotic range (ξoℓ small).
Also, by this choice the local truncation error of the scheme along the direction β = (π/8) is
made zero. Convergence studies of the relative error in the L2 norm, the H1 semi-norm and
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Figure 9: Convergence of the relative error considering ξo = 10
√
10 and for mesh resolutions

that guarantee at least n elements per wavelength, where n ∈ {4, 6, 8, 10, 12, 14, 16}. The
considered norms and the wave directions are: (a) L2 norm, β = (π/9) ; (b) H1 semi-norm,
β = (π/9) ; (c) L2 norm, β = (π/4) and (d) H1 semi-norm, β = (π/4)
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Figure 10: Convergence of the relative error considering ξo = 100 and for mesh resolutions
that guarantee at least n elements per wavelength, where n ∈ {4, 6, 8, 10, 12, 14, 16}. The
considered norms and the wave directions are: (a) L2 norm, β = (π/9) ; (b) H1 semi-norm,
β = (π/9) ; (c) L2 norm, β = (π/4) and (d) H1 semi-norm, β = (π/4)
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Figure 11: Convergence of the relative error in the l∞ Euclidean norm using: (a) ξo = 10
√
10,

β = (π/9) ; (b) ξo = 100, β = (π/9) ; (c) ξo = 10
√
10, β = (π/4) ; (d) ξo = 100, β = (π/4).

The considered mesh resolutions guarantee at least n elements per wavelength, where n ∈
{4, 6, 8, 10, 12, 14, 16}.
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the l∞ Euclidean norm are done and the pollution effect is found to be small. In particular,
using the optimal expression for α the relative error of our scheme in the l∞ Euclidean norm
(for the considered examples and using at least ten elements per wavelength) is found to be
around or less than one percent.

The abstractness in the definition of the QSFEM hinders its extension to unstructured
meshes. This is a common problem faced by all the sixth-order methods proposed within
the framework of the FDM. The recently proposed QOPG method addresses this issue and
is able to attain a dispersion accuracy of the same order as the QSFEM on square meshes.
Nevertheless it uses a quadratic bubble perturbation function defined over a macro-element
and the parameters multiplying these bubbles are found by solving local optimization prob-
lems involving a functional of the local truncation error. Alternate methods that achieve
this objective were proposed earlier within a variational setting and with similar implementa-
tion/computational cost, viz. the RBFEM [26], the DGB method [32], the GPR method [34]
etc. Can this path to obtain the QSFEM be simplified? That is the outlook of this article.

Recall that the nonstandard compact stencil studied here has an additional structure that
reduces its abstractness. This additional structure throws light on the extension of this stencil
to unstructured meshes. In [71] a new Petrov–Galerkin method involving two parameters viz.
α1, α2 is presented which yields this nonstandard compact stencil on rectangular meshes.
Making the two parameters equal, i.e. α1 = α2 = α, we recover the compact stencil obtained
by the α-interpolation of the Galerkin FEM and the classical central FDM. This Petrov–
Galerkin method provides the counterparts of these two schemes on unstructured meshes and
allows the treatment of natural boundary conditions (Neumann or Robin) and the source
terms in a straight-forward manner. This we believe would open door to design higher-order
Petrov–Galerkin methods which can be an alternative to the existing higher-order methods
for the Helmholtz equation.

6 Acknowledgments

The first author acknowledges the economic support received through the FI pre-doctoral
grant from the Department of Universities, Research and Information Society (Generalitat
de Catalunya) and the European Social Fund. He also thanks Profs. Ramon Codina and
Carlos Felippa for many useful discussions. Support for this research provided by the projects
SEDUREC of the Ministry of Science & Education Spain, REALTIME from the European
Research Council of the European Commission and AIDMAR of the Ministry of Science &
Innovation Spain are gratefully acknowledged.

References

[1] Courant R, Hilbert D. Methods of mathematical physics, Vol. I, Wiley-Interscience, 1989.

[2] Chu-hua S. “The general derivation of Ritz method and Trefftz method in elastomechanics,”
Applied Mathematics and Mechanics 1982, Vol. 3, No. 5, pp. 739–748.

[3] Marin SP. “A Finite Element Method for Problems Involving the Helmholtz Equation in Two
Dimensional Exterior Regions,” Thesis, Carnegie-Mellon University, Pittsburgh, Pa., 1978.

[4] Aziz AK, Werschulz A. “On the Numerical Solution of Helmholtz’s Equation by the Finite Ele-
ment Method,” SIAM Journal on Numerical Analysis 1980, Vol. 17, No. 5, pp. 681–686.

31



[5] Aziz AK, Kellogg RB, Stephens AB. “A Two Point Boundary Value Problem with a Rapidly
Oscillating Solution,” Numerische Mathematik 1988, Vol. 53, pp. 107–121.

[6] Demkowicz L. “Asymptotic convergence in finite and boundary element methods: part 1: theo-
retical results,” Computers & Mathematics with Applications 1994, Vol. 27, No. 12, pp. 69–84.

[7] Ihlenburg F, Babuska I. “Finite Element Solution of the Helmholtz Equation with High Wave
Number Part I: The h-Version of the FEM,” Computers & Mathematics with Applications 1995,
Vol. 30, No. 9, pp. 9–37.

[8] Ihlenburg F, Babuska I. “Finite Element Solution of the Helmholtz Equation with High Wave
Number Part II: The h-p Version of the FEM,” SIAM Journal on Numerical Analysis 1997, Vol.
34, No. 1, pp. 315–358.

[9] Babuska I, Sauter SA. “Is the pollution effect of the FEM avoidable for the Helmholtz equation
considering high wave numbers?,” SIAM Journal on Numerical Analysis 1997, Vol. 34, No. 6, pp.
2392–2423.

[10] Babuska IM, Sauter SA. “Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equa-
tion Considering High Wave Numbers?,” SIAM Review 2000, Vol. 42, No. 3, pp. 451–484.

[11] Harari I, Hughes TJR. “Finite element methods for the Helmholtz equation in an exterior domain:
model problems,” Computer Methods in Applied Mechanics and Engineering 1991, Vol. 87, pp.
59–96.

[12] Thompson LL, Pinsky PM. “A Galerkin Least Squares Finite Element Method for the Two-
Dimensional Helmholtz Equation,” International Journal for Numerical Methods in Engineering
1995, Vol. 38, pp. 371–397.

[13] Harari I, Hughes TJR. “Stabilied finite element methods for steady advection–diffusion with
production,” Computer Methods in Applied Mechanics and Engineering 1994, Vol. 115, pp. 165–
191.

[14] Babuska I, Osborn JE. “Generalized Finite Element Methods: Their performance and their
relation to mixed methods,” SIAM Journal on Numerical Analysis 1983, Vol. 20, No. 3, pp.
510–536.

[15] Babuska I, Ihlenburg F, Paik ET, Sauter SA. “A Generalized Finite Element Method for solving
the Helmholtz equation in two dimensions with minimal pollution,” Computer Methods in Applied
Mechanics and Engineering 1995, Vol. 128, pp. 325–359.

[16] Melenk JM, Babuska I. “The partition of unity finite element method: Basic theory and appli-
cations,” Computer Methods in Applied Mechanics and Engineering 1996, Vol. 139, pp. 289–314.

[17] Babuska I, Melenk JM. “The partition of unity method,” International Journal for Numerical
Methods in Engineering 1997, Vol. 40, pp. 727–758.

[18] Laghrouche O, Mohamed MS. “Locally enriched finite elements for the Helmholtz equation in
two dimensions,” Computers and Structures 2008, doi:10.1016/j.compstruc.2008.04.006.

[19] Franca LP, Farhat C, Macedo AP. “Residual-free bubbles for the Helmholtz equation,” Interna-
tional Journal for Numerical Methods in Engineering 1997, Vol. 40, pp. 4003–4009.

[20] Barbone PE, Harari I. “Nearly H1-optimal finite element methods,” Computer Methods in Ap-
plied Mechanics and Engineering 2000, Vol. 190, No. 43–44 pp. 5679–5690.

[21] Harari I, Gosteev K. “Bubble-based stabilization for the Helmholtz equation,” International
Journal for Numerical Methods in Engineering 2007, Vol. 70, pp. 1241–1260.

32



[22] Strouboulis T, Babuska I, Hidajat R. “The generalized finite element method for Helmholtz
equation: Theory, computation, and open problems,” Computer Methods in Applied Mechanics
and Engineering 2006, Vol. 195, pp. 4711–4731.

[23] Strouboulis T, Hidajat R, Babuska I. “The generalized finite element method for Helmholtz equa-
tion. Part II: Effect of choice of handbook functions, error due to absorbing boundary conditions
and its assessment,” Computer Methods in Applied Mechanics and Engineering 2008, Vol. 197,
pp. 364–380.

[24] Cipolla JL. “Subgrid modeling in a Galerkin method for the Helmholtz equation,” Computer
Methods in Applied Mechanics and Engineering 1999, Vol. 177, pp. 35–49.

[25] Oberai AA, Pinsky PM. “A multiscale finite element method for the Helmholtz equation ,”
Computer Methods in Applied Mechanics and Engineering 1998, Vol. 154, No. 3–4, pp. 281–297.

[26] Oberai AA, Pinsky PM. “A residual-based finite element method for the Helmholtz equation,”
International Journal for Numerical Methods in Engineering 2000, Vol. 49, pp. 399–419.

[27] Guasch O, Codina R. “An algebraic subgrid scale finite element method for the convected
Helmholtz equation in two dimensions with applications in aeroacoustics,” Computer Methods
in Applied Mechanics and Engineering 2007, Vol. 196, pp. 4672–4689.

[28] Hauke G, Sangalli G, Doweidar MH. “Combining adjoint stabilized methods for the advection–
diffusion–reaction problem,” Mathematical Models and Methods in Applied Sciences 2007, Vol.
17, No. 2, pp. 305–326.

[29] Farhat C, Harari I, Franca LP. “The discontinuous enrichment method,” Computer Methods in
Applied Mechanics and Engineering 2001, Vol. 190, pp. 6455–6479.

[30] Farhat C, Harari I, Hetmaniuk U. “A discontinuous Galerkin method with Lagrange multipliers
for the solution of Helmholtz problems in the mid-frequency regime,” Computer Methods in
Applied Mechanics and Engineering 2003, Vol. 192, pp. 1389–1419.

[31] Alvarez GB, Loula AFD, Dutra do Carmo EG, Rochinha FA. “A discontinuous finite element
formulation for Helmholtz equation,” Computer Methods in Applied Mechanics and Engineering
2006, Vol. 195, pp. 4018–4035.

[32] Loula AFD, Alvarez GB, Dutra do Carmo EG, Rochinha FA. “A discontinuous finite element
method at element level for Helmholtz equation,” Computer Methods in Applied Mechanics and
Engineering 2007, Vol. 196, pp. 867–878.
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