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Abstract

We present the design of a high-resolution Petrov–Galerkin(HRPG) method using
linear finite elements for the problem defined by the residual

R(φ) :=
∂φ

∂t
+ u

∂φ

∂x
− k∂

2φ

∂x2
+ sφ− f

where k, s ≥ 0. The structure of the method in 1D is identical to the consistent approx-
imate upwind Petrov–Galerkin (CAU/PG) method [19] except for the definitions of the
stabilization parameters. Such a structure may also be attained via the Finite Calculus
(FIC) procedure [13, 41] by an appropriate definition of the characteristic length. The
prefix ‘high-resolution’ is used here in the sense popularized by Harten, i.e. second order
accuracy for smooth/regular regimes and good shock-capturing in nonregular regimes.
The design procedure embarks on the problem of circumventing the Gibbs phenomenon
observed in L2-projections. Next we study the conditions on the stabilization parameters
to circumvent the global oscillations due to the convective term. A conjuncture of the
two results is made to deal with the problem at hand that is usually plagued by Gibbs,
global and dispersive oscillations in the numerical solution. It is shown that the method
indeed reproduces stabilized high-resolution numerical solutions for a wide range of values
of u, k, s and f . Finally, some remarks are made on the extension of the HRPG method
to multidimensions.

Keywords: convection–diffusion–reaction; finite element; Petrov–Galerkin; stabilized
high-resolution methods;

1 Introduction

A singularly perturbed convection–diffusion–reaction problem is an initial-boundary value
problem where the diffusion coefficient may take arbitrarily small values. The solution of this
problem may exhibit transient and/or exponential boundary layers. In higher dimensions the
solution may also exhibit characteristic boundary and/or interior layers. It is well known
that the numerical solution of this problem by the Bubnov–Galerkin finite element method
(FEM) is prone to exhibit global, Gibbs and dispersive oscillations. The solution of the sta-
tionary problem by the above method exhibits spurious global oscillations for the convection-
dominated cases. The local Gibbs oscillations are exhibited along the characteristic layers for
the convection-dominated cases. For the reaction-dominated cases Gibbs oscillations may be
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found near the Dirichlet boundaries and in the regions where the distributed source term is
nonregular. The solution of the transient problem may exhibit dispersive oscillations should
the initial solution and/or the distributed source term are nonregular.

In the context of variational formulations and weighted residual methods, control over the
global instability has been achieved via the streamline-upwind Petrov–Galerkin (SUPG) [1, 2],
Taylor–Galerkin [4], characteristic Galerkin [3, 5], Galerkin least squares (GLS) [6], bubble
functions [7–9], variational multiscale (VMS) [10, 11], characteristic-based split (CBS) [12] and
finite calculus (FIC) based methods [13]. A thorough comparison of some of these methods
can be found in [16]. Close connections between the VMS method and stabilization via bubble
functions was pointed out in [15]. It was shown that some of the above stabilized methods
can be recovered using the FIC equations via an appropriate definition of the stabilization
parameters [13, 14]. Nevertheless nonregular solutions continue to exhibit the Gibbs and
dispersive oscillations.

Several shock-capturing nonlinear Petrov–Galerkin methods were proposed to control the
Gibbs oscillations observed across characteristic internal/boundary layers for the convection-
diffusion problem [17–28]. A thorough review, comparison and state of the art of these and
several other shock-capturing methods for the convection-diffusion equations, therein named
as spurious oscillations at layers diminishing methods, was done in [29]. Reactive terms were
not considered in the design of these methods and hence they fail to control the localized
oscillations in the presence of these terms. Exceptions to this are the consistent approximate
upwind (CAU) method [19], the methods presented in [24] and those that take the CAU
method as the starting point [21, 25, 26]. Nevertheless the expressions for the stabilization
parameters therein were never optimized for reactive instability and often the solutions are
over-diffusive in these cases.

In the quest to gain reactive stability several methods were built upon the existing frame-
works of methods that control Global oscillations. Following the framework of the SUPG
method linear Petrov–Galerkin methods were proposed for the convection–diffusion–reaction
problem, viz. the DRD [30] and (SU+C)PG [31] methods. Based on the GLS method
linear stabilized methods were proposed, viz. the GGLS method [32] for the diffusion–
reaction problem and GLSGLS method [33] for the convection-diffusion-production problem.
Within the framework of stabilization via bubbles the USFEM method [34] for the diffusion–
reaction problem, the improved USFEM method [35] and the link cutting bubbles [36] for the
convection–diffusion–reaction problem were proposed. Based on the VMS method linear sta-
bilized methods were proposed for the convection–diffusion–reaction problem, viz. the ASGS
method [37], the methods presented in [38, 39] and the SGS-GSGS method [40]. Using the
FIC equations a nonlinear method based on a single stabilization parameter was proposed
for the convection–diffusion–reaction problem [41, 42]. This nonlinear method, though ini-
tially formulated within the Petrov–Galerkin framework, subsequent modeling of a simplified
form for the numerical nonlinear diffusion, deviated the method from being residual-based
(consistency property is violated). Nodally exact Ritz discretizations of the 1D diffusion-
absorption/production equations by variational FIC and modified equation methods using
a single stabilization parameter were presented in [43]. Generally the homogeneous steady
convection–diffusion–reaction problem in 1D has two fundamental solutions. Likewise, the
characteristic equation associated with linear stabilized methods which result in compact
stencils are quadratic and hence have two solutions. Thus in principle using two stabilization
parameters (independent of the boundary conditions) linear stabilized methods which result
in compact stencils can be designed to be nodally exact in 1D. Following this line several

2



‘two-parameter methods’ viz. (SU+C)PG, GLSGLS and SGS-GSGS methods were designed
to be nodally exact for the stationary problem in 1D.

Control over the dispersive oscillations for the transient convection-diffusion problem via
linear Petrov–Galerkin methods were discussed in [44] and using space-time finite elements
in [45]. As for the linear methods, optimizing the expressions of the stabilization parameters
to attain monotonicity will lead to solutions that are at most first-order accurate.

Out of the context of variational formulations and weighted residual methods, a vast
literature exists on the design of high-resolution methods. These methods are characterized as
Algebraic Flux Correction/Limiting methods and are usually developed with in the framework
of finite-difference (FDM) or finite-volume (FVM) models. We refer to the books [46–49] for
a review of these methods and to the seminal papers in this field [50–54]. The book [55]
describes the state of the art in the development of high-resolution schemes based on the Flux-
Corrected Transport (FCT) paradigm for unstructured meshes and their generalization to the
FEM. Nevertheless the use of these schemes were reported to be rather uncommon in spite of
their enormous potential. We refer to the introduction in [56] that discusses the popularity
of methods based on variational formulations and weighted residuals. Thus, as encouraged
therein, the quest for the design of high-resolution methods based on variational/weighted-
residual formulations is active to date.

In this paper we present the design of a FIC-based nonlinear high-resolution Petrov–
Galerkin (HRPG) method for the 1D convection–diffusion–reaction problem. The prefix ‘high-
resolution’ is used here in the sense popularized by Harten, i.e. second order accuracy for
smooth/regular regimes and good shock-capturing in nonregular regimes. The goal is to
design a numerical method within the context of the FIC variational formulation and weighted
residuals which is capable of reproducing high-resolution numerical solutions for both the
stationary (efficient control of global and Gibbs oscillations as seen in methods [31, 33, 36, 40–
43]) and transient regimes (efficient control of dispersive oscillations as seen in Algebraic Flux
Correction/Limiting methods). In §2 we present the statement of the problem and the HRPG
method in higher-dimensions. The statement in higher-dimensions is made only to distinguish
the current method with the existing ones. The structure of the method in 1D is identical to
the CAU method except for the definitions of the stabilization parameters. The method can be
derived via the FIC approach [13] with an adequate (nonlinear) definition of the characteristic
length. Thus the results presented here may be extended to these methods. In §4 we focus on
the Gibbs phenomenon that is observed in L2-projections. The design procedure embarks by
defining a model L2-projection problem and establishing the expression for the stabilization
parameter to circumvent the Gibbs phenomenon. The target solution for the model problem is
chosen to be the one obtained via the mass-lumping procedure. We remark that this solution
is used to evaluate the stabilization terms introduced by the HRPG method and an expression
for the stabilization parameter is defined that depends only on the problem data. In §5 we
extend the methodology to the transient convection–diffusion–reaction problem. We split the
design into four model problems and derive the stabilization parameters accordingly. Finally
we arrive at an expression for the stabilization parameters depending only on the problem
data and representing asymptotically the prior expressions derived for the model problems.
We summarize the HRPG design in §5.6. In §5.7 several examples are presented that support
the design objectives i.e. stabilization with high-resolution. In §6 some remarks are made on
the extension of the HRPG method to multidimensions. Finally we arrive at some conclusions
in §7.
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2 High-resolution Petrov–Galerkin method

The statement of the multidimensional convection–diffusion–reaction problem is as follows:

R(φ) :=
∂φ

∂t
+ u · (∇φ)−∇ · (k∇φ) + sφ− f(x) = 0 in Ω (1a)

φ(x, t = 0) = φ0(x) in Ω (1b)

φ = φp on ΓD (1c)

(k∇φ) · n + gp = 0 on ΓN (1d)

where u is the convection velocity, k,s are the diffusion and reaction coefficient respectively,
f(x) is the source, φ0(x) is the initial solution, φp and gp are the prescribed values of φ and
the diffusive flux at the Dirichlet and Neumann boundaries respectively and n is the normal
to the boundary.

The variational statement of the problem (1) can be expressed as follows: Find φ : [0, T ] 7→
V such that ∀w ∈ V0 we have,(

w,R(φ)
)

Ω
+
(
w, (k∇φ) · n + gp

)
ΓN

= 0 (2)

where, if H is the associated Hilbert space then V := {w : w ∈ H and w = φp on ΓD},
V0 := {w : w ∈ H and w = 0 on ΓD}, (·, ·)Ω and (·, ·)ΓN

denote the L2(Ω) and L2(ΓN ) inner
products respectively. The problem (1) may also be expressed in the weak form as follows:
Find φ : [0, T ] 7→ V such that ∀w ∈ V0 we have,

a(w, φ) = l(w) (3a)

a(w, φ) :=
(
w,
∂φ

∂t
+ u∇(φ) + sφ

)
Ω

+
(
∇(w), k∇(φ)

)
Ω

(3b)

l(w) :=
(
w, f(x)

)
Ω
−
(
w, gp

)
ΓN

(3c)

The statement of the Galerkin method applied to the weak form of the problem (3) is:
Find φh : [0, T ] 7→ V h such that ∀wh ∈ V h

0 we have,

a(wh, φh) = l(wh) (4)

We follow [1] to describe a certain class of Petrov–Galerkin methods which account for
weights that are discontinuous across element boundaries. The perturbed weighting function
is written as w̃h = wh + ph, where ph is the perturbation that account for the discontinuities.
The statement of these class of Petrov–Galerkin methods is as follows: Find φh : [0, T ] 7→ V h

such that ∀wh ∈ V h
0 we have,

a(wh, φh) +
∑
e

(
ph, R(φh)

)
Ωe

h

= l(wh) (5)

The HRPG method whose design in 1D is presented in the subsequent sections, may be
defined as Eq.(5) along with the following definitions:

ph := [h + H · ûr] · ∇wh (6a)

ur :=
R(φh)

|∇φh|2
∇φh; ⇒ ûr :=

ur

|ur|
=

sgn[R(φh)]

|∇φh|
∇φh (6b)

4



Method Perturbation(ph) Remarks

SUPG[1] τu · ∇wh

MH[17] Ce
i

Ce
i ∈ {−

1

3
,
2

3
},i = 1, 2, 3∑

Ce
i = 0

DC[18] τ1u · ∇wh + τ2u
‖ · ∇wh u‖ :=

u · ∇φh
|∇φh|2

∇φh

CAU[19],
τ1u · ∇wh + τ2u

r · ∇wh ur :=
R(φh)

|∇φh|2
∇φhCCAU[21]

CD[22] τ1u · ∇wh + α2`∇wh · [I− û⊗ û] · ûr û :=
u

|u|
ûr :=

ur

|ur|
=

sgn[R(φh)]

|∇φh|
∇φh

SAUPG[25],
τ [λu + (1− λ)ur] · ∇wh λ is a smoothness measure.

Mod.CAU[22]

FIC[13] hfic · ∇wh here hfic is a characteristic length
vector which may be defined in a lin-
ear or nonlinear fashion.

HRPG [h + H · ûr] · ∇wh h,H are frame-independent linear
characteristic length tensors based
on the element geometry (see §6).

Table 1: Perturbations associated with Petrov–Galerkin methods

where, h and H are frame-independent ‘linear’ characteristic length tensors that are defined
based on the element geometry (see §6). We refer to the Table(1) for a comparison of the
HRPG method with the SUPG, FIC and some of the existing shock-capturing methods.
From Eqs.(6),(7) and Table(1) the HRPG method could be understood as the combination of
upwinding plus a nonlinear discontinuity-capturing operator. The distinction is that in general
the upwinding provided by h is not streamline and the discontinuity-capturing provided by
H · ûr is neither isotropic nor purely crosswind. Of course defining h := τu and H := (β`)I
or H := (β`)[I − û ⊗ û] one would recover (except for the definitions of the stabilization
parameters) the CAU and the CD methods respectively. We remark that one may arrive at
the HRPG method via the finite-calculus(FIC) equations wherein the characteristic length is
defined as hfic := h + H · ûr. From this point of view the HRPG method can be presented
as ‘FIC-based’. More details are given in the next section.

Note that in 1D u‖ = u and hence the performance of the DC method [18] is similar to
that of the SUPG method. Also note that as the notion of crosswind directions does not exist
in 1D, the CD method [22] is identical to the SUPG method. On the other hand the nonlinear
shock-capturing terms introduced by the CAU method still exists in 1D and thus in principle
are able to control the Gibbs and dispersive oscillations. This feature does carry over to all
the methods that have the shock-capturing term similar to that in the CAU method viz. the
methods presented in [21],[25],[26],[24]. Unfortunately as pointed out in [29] and in §5.7.1 of
this paper, these methods are often over diffusive. The structure of the HRPG method in
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1D is identical to the CAU method except for the definitions of the stabilization parameters.
In the subsequent sections we design the stabilization parameters of the HRPG method to
overcome the shortcomings of the earlier methods.

From Eqs.(5) and (6) the statement of the HRPG method in 1D can be expressed as
follows: Find φh : [0, T ] 7→ V h such that ∀wh ∈ V h

0 we have,

a(wh, φh) +
∑
e

[(α`
2

dwh

dx
,R(φh)

)
Ωe

h

+
(β`

2

|R(φh)|
|∇φh|

dwh

dx
,
dφh
dx

)
Ωe

h

]
= l(wh) (7)

where α , β are stabilization parameters to be defined later.

3 Derivation of the HRPG expression via the FIC procedure

The governing equations in the finite calculus (FIC) approach are derived by expressing the
balance equations in a domain of finite size and retaining higher order terms. For the 1D
convection–diffusion–reaction problem the FIC governing equations are written as [13]

R(φ)− h

2

∂R(φ)

∂x
= 0 in Ω (8a)

φ(x, t = 0) = φ0(x) in Ω (8b)

φ− φp = 0 on ΓD (8c)

k
∂φ

∂x
+ gp +

h

2
R(φ) = 0 on ΓN (8d)

where the characteristic length h is the dimension of the domain where balance of fluxes is
enforced and R(φ) is defined in Eq.(1a).

The variational statement of Eqs.(8) can be written as: Find φ : [0, T ] 7→ V such that
∀w ∈ V0 we have,(

w,R(φ)− h

2

∂R(φ)

∂x

)
Ω

+
(
w, k

∂φ

∂x
+ gp +

h

2
R(φ)

)
ΓN

= 0 (9)

The corresponding weak form is: Find φ : [0, T ] 7→ V such that ∀w ∈ V0 we have,(
w +

h

2

dw

dx
,R(φ)

)
Ω

+
(
w, k

∂φ

∂x
+ gp

)
ΓN

= 0 (10)

In the derivation of Eq.(10) we have neglected the change of h within the elements. Clearly
Eq.(10) can be seen as a Petrov–Galerkin form with the weighting function defined as w̃ :=

w + h
2

dw
dx

. The term depending on h in Eq.(10) is usually computed in the element interiors

only to avoid the discontinuities of the second derivatives terms in R(φ) along the element
boundaries. The discretized form of Eq.(10) is therefore written as: Find φh : [0, T ] 7→ V h

such that ∀wh ∈ V h
0 we have,

a(wh, φh) +
∑
e

(h
2

dwh

dx
,R(φh)

)
Ωe

h

= l(wh) (11)

The characteristic length can be defined in a number of ways so as to provide an ‘opti-
mal’(stabilized) solution. In this work the following nonlinear expression is chosen for h:

h := α`+ β`
sgn[R(φh)]

|∇φh|
∇φh (12)
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where ` is the element length and α, β are stabilization parameters. A discussion of the alter-
natives for the definition of h in the FIC context can be found in [13, 28, 41, 42]. Substituting
the expression of h into Eq.(11) gives the HRPG form of Eq.(7).

4 Gibbs phenomenon in L2-Projections

4.1 Introduction

Gibbs phenomenon is a spurious oscillation that occurs when using a truncated Fourier series
or other eigen function series at a simple discontinuity. It is characterized by an initial
overshoot and then a pattern of undershoot-overshoot oscillations that decrease in amplitude
further from the discontinuity. In fact for any given function f and using the metric as the
standard L2-norm, the partial sum of order N of the Fourier series of f denoted as SNf is
the best approximation of f in a subspace spanned by trigonometric polynomials of order
N . Thus Snf is the L2-Projection of f in the considered subspace. This phenomenon is
manifested due to the lack of completeness of the approximation space. Similar oscillations
appear in the problem of finding the best approximation of a given discontinuous function in
any subspace using the L2-norm as the metric. On every discrete grid/mesh the maximum
wavenumber that can be represented is limited by the Nyquist limit. The Nyquist frequency
on a uniform grid with grid spacing ` is given by π/`. Thus the span of the finite element
basis functions associated with this mesh might be viewed as a truncated function series which
might be expanded by refining the mesh. Hence the projection of a discontinuous function
onto this finite element space exhibits the Gibbs phenomenon. As the amplitude spectrum of
a discontinuous function decays only as fast as the harmonic series, which is not absolutely
convergent, it is impossible to circumvent these oscillations by mere mesh refinement.

The variational statement of the L2-projection problem is as follows: Find φh ∈ V h such
that ∀wh ∈ V h

0 we have, (
wh, φh − f

)
Ωh

= 0 (13)

Where f is the given function which might admit discontinuities. If we denote the solution
of Eq.(13) as φh = Ph(f), we have,

‖ Ph(f)− f ‖L2(Ωh)≤‖ wh − f ‖L2(Ωh) (14)

In the following sections we consider the scaled L2-projection problem defined by the residual
R(φ) = sφ − f . In the context of the convection–diffusion–reaction problem, the problem
data s physically represents the reaction coefficient. The variational statement of the scaled
L2-projection problem is as follows: Find φh ∈ V h such that ∀wh ∈ V h

0 we have,

(
wh, sφh − f

)
Ωh

= 0 (15)

Taking s = 1 we recover the L2-projection problem given by Eq.(13).
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4.2 Galerkin Method

4.2.1 FE discretization

Discretization of the space by linear finite elements will lead to the approximation φh = NaΦa

and the Eq.(15) reduces into the following system of equations.

sM ·Φ = f (16)

Mab =
(
Na, N b

)
Ωh

; fa =
(
Na, f

)
Ωh

(17)

It is well known that the Gibbs oscillations can be circumvented in the numerical solution if
the standard row-lumping technique is performed on the mass matrix M. Unfortunately, this
operation though effective for this specific problem, it cannot be extended to other problems
in general. The answer for not advocating this technique can be found in the Godunov’s
theorem: ‘All linear monotone schemes are at most first order accurate’. The only way to
circumvent this problem is to design a nonlinear method that would reproduce the same
numerical solution as obtained by mass-lumping.

4.2.2 Model Problem 1

The 1D domain is chosen to be of unit length and discretized by 4N linear elements(N>5).
The function whose L2-projection is sought is defined as follows:

f(x) =

{
0 ∀ x ∈ [0, 0.25 + η1`] ∪ [0.75− η2`, 1]
q else

(18)

Where ` = 1/(4N) is the element length and η1, η2 ∈ [0, 1] are parameters that determine the
location of the simple discontinuity in the function f . The solution of Eq.(16) using a lumped
mass matrix can be expressed as follows:

Φ = (
q

s
){0, · · · , 0, (1− η1)2

2
,
(2− η2

1)

2
, 1, · · · , 1, (2− η2

2)

2
,
(1− η2)2

2
, 0, · · · , 0} (19)

Figure (1a) illustrates the function f(x) using η1 = 0.5 , η2 = 0.3 and q = s = 1 alongside
the numerical solution of the Eq.(16) using both the consistent and lumped mass matrix.
Figure (1b) illustrates the profile characteristics of the monotone solution obtained via mass-
lumping (Eq.19) with respect to the location of the discontinuity.

4.2.3 Discrete Upwinding

Let the discrete system of equations be represented in the matrix form as follows:

A · x = b (20)

Discrete upwinding is an algebraic operation to convert the system matrix A into an M-matrix
[55]. Discrete upwinding is the least diffusive linear operation to produce an M-matrix. We
denote the discrete upwinding operation on any given matrix A by DU(A). The discrete
upwinding operation is performed by adding to the matrix A a discrete diffusion matrix D̃
as follows:

d̃ii = −
∑
j 6=i

d̃ij ; d̃ij = d̃ji = −max{0, aij , aji} (21)

DU(A) = Ã = A + D̃ (22)
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Figure 1: (a) The design problem ; (b) Characteristics of the monotone solution(AGFE).
ABHIJE illustrates the discontinuous regime of f(x)

It is interesting to note that the discrete upwinding operation on the mass matrix M will
result in the mass-lumping operation.

Me =
`

6

[
2 1
1 2

]
; D̃e =

`

6

[
1 −1
−1 1

]
(23)

DU(Me) = Me + D̃e =
`

6

[
3 0
0 3

]
= Me

L (24)

4.2.4 Total variation

The total variation of a function, say φ(x), in 1D is given by the following equation:

TV (φ) =

∫
x
|∇φ|dx (25)

Thus it can be seen that the total variation, as the name suggests, measures the total hike
or drop in the function profile as we traverse the 1D domain. It can also be noticed that
any spurious oscillation in the numerical approximation of φ would cause the total variation
to increase. Harten proved that a monotone scheme is total variation non-increasing (TVD)
and a TVD scheme is monotonicity preserving [53]. To date various high-resolution schemes
have been designed based on the TVD concept often using flux/slope limiters. If linear
finite elements are used to approximate the numerical solution φh the total variation may be
calculated as follows:

TV (φh) =
∑
i

|Φi+1 − Φi| (26)

9



For the problem under consideration, the sufficient conditions given by Harten in [53] for
a numerical scheme to be TVD drops down to the condition for the system matrix to be an
M-matrix. Thus in the design of the high-resolution Petrov–Galerkin method we use the total
variation of the numerical solution as a posteriori verification condition. The total variation
of the given discontinuous function f(x) in the design problem is TV (f) = 2.

4.3 HRPG design

In this section we design the stabilization parameters of the HRPG method given by Eq.(7)
and choosing α = 0. For the model problem described in §4.2.2 the statement of the method
is as follows: Find φh ∈ V h such that ∀wh ∈ V h

0 we have,(
wh, R(φh)

)
Ωh

+
∑
e

(β`
2

|R(φh)|
|∇φh|

dwh

dx
,
dφh
dx

)
Ωe

h

= 0 (27)

Where, R(φh) := sφh − f is the residual and β is a stabilization parameter to be defined
later. If the domain is discretized by linear finite elements the Eq.(27) can be expressed in
the matrix form for each element as follows:[

sMe + Se
]
·Φe = f eg (28)

where the corresponding matrices are defined as,

Me =
(
Na, N b

)
Ωe

h

=
s`

6

[
2 1
1 2

]
(29)

Se = (
β`

2
)
( |R(φh)|
|∇φh|

dNa

dx
,
dN b

dx

)
Ωe

h

=
k∗(φh)

`

[
1 −1
−1 1

]
(30)

f eg =
(
Na, f

)
Ωe

h

(31)

k∗(φh) =
β

2

( |R(φh)|
|∇φh|

, 1
)

Ωe
h

(32)

fg = q` {0, · · · , 0, (1− η1)2

2
,
(2− η2

1)

2
, 1, · · · , 1, (2− η2

2)

2
,
(1− η2)2

2
, 0, · · · , 0} (33)

In order to design the parameter β we assume that the method converges to the solution
given by Eq.(19). This is a fair assumption as it can be seen in Eq.(27) that the nonlinear
Petrov–Galerkin term is symmetric subjected to the linearization as shown in Eq.(30) and
hence there exists a β such that the effect of this term is equivalent to the discrete diffusion
introduced by the discrete upwinding operation. If η ∈ [0, 1] be a generic parameter to define
the location of the simple discontinuity within the element, we have then for the element
containing the discontinuity,( |R(φh)|

|∇φh|
, 1
)

Ωe
h

= (
s`2

2
)
[1 + 2η − 6η2 + 8η3 − 4η4

1 + 2η − 2η2

]
= (

s`2

2
)
[1 + 2η(1− η)[1− 2η(1− η)]

[1 + 2η(1− η)]

]
(34)
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Figure 2: The plot of g(η) for η ∈ [0, 1]

For the element adjacent to the element containing the discontinuity we have,( |R(φh)|
|∇φh|

, 1
)

Ωe
h

= (
s`2

2
) (35)

Thus, the nonlinear term in Eq.(27) and for the converged solution given by Eq.(19) can
be expressed as follows:

( |R(φh)|
|∇φh|

, 1
)

Ωe
h

=


(s`2/2) g(η) , for elements with shock
(s`2/2) , for elements adjacent to the shock
0 , else

(36)

where, the function g(η) is defined as,

g(η) :=
[1 + 2η(1− η)[1− 2η(1− η)]

[1 + 2η(1− η)]

]
(37)

∀ η ∈ [0, 1] , g(η) ∈ [(5/6), 1] (38)

Figure (2) illustrates the plot of the function g(η) vs η. To define the parameter β
we require that for the elements in the vicinity of the discontinuity the nonlinear Petrov–
Galerkin method reproduces the effect of discrete upwinding. The system matrix for the
element containing the discontinuity is as follows,[

sMe + Se
]

= (
s`

6
)

[
2 1
1 2

]
+ (

βs`g(η)

4
)

[
1 −1
−1 1

]
(39)

To reproduce the effect of discrete upwinding the following relation should hold,

sMe + Se = DU(sMe) = sMe + D̃e (40)

⇒ (
βs`g(η)

4
)

[
1 −1
−1 1

]
=

s`

6

[
1 −1
−1 1

]
(41)
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The expression for the parameter β may be expressed as follows:

βg(η) ≥ 2

3
(42)

Remarks:

• The definition of β satisfying the equation βg(η) = 2
3 would exactly reproduce the

solution of Eq.(16) using the lumped mass matrix.

• From the design point-of-view the definition of β involving the function g(η) would
imply a priori knowledge of the solution. Hence we define β using the extremum values
of the function g(η).

Thus from Eq.(38) and Eq.(42) we have,

Type-I : min{g(η)} =
5

6
⇒ β ≥ 4

5
(43)

Type-II : max{g(η)} = 1 ⇒ β ≥ 2

3
(44)

With these definitions the design of the high-resolution Petrov–Galerkin (HRPG) method
for the scaled L2-Projection problem is complete.

4.4 Examples

4.4.1 Example 1

We solve the problem described in §4.2.2 and using q = s = 1. The 1D domain is discretized
into 40 linear elements. The numerical results of the HRPG method (Type I and II) are
compared with the solutions obtained by the Galerkin method using both consistent and
lumped mass matrix. Figs.(3,4) illustrate the results of HRPG Type I and Type II respectively
for η1 = 0.5, η2 = 0.3. Figs.(5,6) illustrate the same for η1 = 1, η2 = 0. Both Type I and
Type II effectively circumvent the Gibbs phenomenon. HRPG Type I method is clearly more
diffusive, nevertheless monotonicity is guaranteed. HRPG Type II is monotone to-the-eye. A
quantitative analysis based on the measured total variation is studied in §4.4.3.

4.4.2 Example 2

The analysis domain is the same as the problem described in §4.2.2 and using s = 1. The 1D
domain is discretized into 100 linear elements. The function whose L2-projection is sought is
now defined as follows:

f(x) =

{
cos(4πx− 2π) ∀ x ∈ [0.25, 0.75]
0 else

(45)

The above function has both smooth and shock regimes. Simple discontinuities are present
at x = 0.25 and x = 0.75 and in the rest of the domain the function is smooth. This
example studies the efficiency of the HRPG method for mixed regimes. Figures (7,8) illustrate
that the accuracy of the solution in the smooth regime is not compromised while effectively
circumventing the Gibbs phenomenon around the shocks.
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Figure 3: Example 1: HRPG Type I, (a) numerical solution for η1 = 0.5, η2 = 0.3 ; (b)
corresponding nonlinear convergence plot
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Figure 4: Example 1: HRPG Type II, (a) numerical solution for η1 = 0.5, η2 = 0.3 ; (b)
corresponding nonlinear convergence plot
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Figure 5: Example 1: HRPG Type I, (a) numerical solution for η1 = 1.0, η2 = 0.0 ; (b)
corresponding nonlinear convergence plot
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Figure 6: Example 1: HRPG Type II, (a) numerical solution for η1 = 1.0, η2 = 0.0 ; (b)
corresponding nonlinear convergence plot
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Figure 7: Example 2: HRPG Type I, (a) numerical solution with both smooth and shock
regimes ; (b) corresponding nonlinear convergence plot
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Figure 8: Example 2: HRPG Type II, (a) numerical solution with both smooth and shock
regimes ; (b) corresponding nonlinear convergence plot
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Figure 9: Example 3: HRPG Type I, (a) TV(φh) plot ; (b) TV(φh)-TV(f) plot

4.4.3 Example 3

The problem considered in this example is the same as in §4.4.1. To reduce the variability
of the problem data, we have chosen η1 = η2. As it is mentioned earlier in §4.2.4, the
total variation(TV) of the numerical solution(φh) is a direct measure (though a posteriori)
of the presence of spurious oscillations. HRPG Type I method guarantees that the system
matrix for the current problem is an M-matrix for all values of η1 and η2. This is a sufficient
condition to obtain a monotonicity-preserving solution. The system matrix using the HRPG
Type II method is an M-matrix only when η1, η2 = {0, 1}. Thus we study TV(φh) to have a
quantitative measure of performance for the Type I and Type II methods.

Figures (9,10) illustrate with respect to the Galerkin method the TV (φh) vs η plots for
the HRPG Type I and Type II methods respectively. It is remarkable that both the methods
measure TV (φh) = 2 which is the same as TV (f). A study of the error TV (φh) − TV (f)
suggests(as expected) that for the Type I method TV (φh) < TV (f) and TV (φh)− TV (f) =
O(1e-11). For the Type II method, TV (φh) > TV (f) and TV (φh) − TV (f) = O(1e-5)
which is an acceptable tolerance. In the light of these results the method we currently prefer
is HRPG Type II.
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Figure 10: Example 3: HRPG Type II, (a) TV(φh) plot ; (b) TV(φh)-TV(f) plot

4.5 Summary

Residual : R(φh) := sφh − f

HRPG method :
(
wh, R(φh)

)
Ωh

+
∑
e

(β`
2

|R(φh)|
|∇φh|

dwh

dx
,
dφh
dx

)
Ωe

h

= 0

Type I : β ≥ 4

5
→ M-matrix guaranteed

Type II : β ≥ 2

3
→ Total variation limit

The Gibbs phenomenon that arises in L2-projections is studied for the Galerkin method in
1D using linear finite elements. A nonlinear Petrov–Galerkin method (HRPG) is formulated
and the stabilization parameter is designed (Type I and Type II) so as to circumvent the
Gibbs phenomenon and thus leading to a high-resolution method. The HRPG method is
shown to perform well in the presence of both smooth and shock regimes in the solution.
HRPG Type II method is shown to be in the total variation limit with acceptable tolerance
of O(1e-5) and thus is essentially non-oscillatory(monotone to-the-eye). Hence it is currently
the preferred choice for the extension of the HRPG design to the model problems in the
subsequent sections.
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5 convection–diffusion–reaction problem

5.1 Galerkin method and discrete upwinding

Consider the convection–diffusion–reaction problem given by Eq.(1) in 1D and subjected only
to the Dirichlet boundary conditions. Discretization of the space by linear finite elements will
lead to the approximation φh = NaΦa. For the Galerkin method we arrive at the following
system of equations.

MΦ̇ + [uC + kD + sM]Φ = f (46)

where the element contributions to the above matrices and vector are given by,

Me
ab =

(
Na, N b

)
Ωh

=
`

6

[
2 1
1 2

]
Ce

ab =
(
Na,∇(N b)

)
Ωh

=
1

2

[
−1 1
−1 1

]
(47)

f ea =
(
Na, f

)
Ωh

=
`

2

{
1
1

}
De

ab =
(
∇(Na),∇(N b)

)
Ωh

=
1

l

[
1 −1
−1 1

]
(48)

The discrete upwinding process applied to the steady state of Eq.(46) will introduce a
numerical diffusion kdu as follows:

DU(uC + kD + sR) = [uC + kD + sR] + kduD (49)

kdu = max

{[
|u|`
2

+
s`2

6
− k
]
, 0

}
= k max

{[
|γ|+ ω

6
− 1
]
, 0
}

(50)

The form of this numerical diffusion (Eq.(50)) is identical to that found in [41] using a FIC-
based approach. The stabilization method presented in [41] introduces within each element
an additional nonlinear diffusion as follows:

kfic = k max

{[(
sgn[∇φh]

sgn[∆φh]

)
γ +

(
sgn[φh]

sgn[∆φh]

)
ω

6
− 1

]
, 0

}
(51)

Clearly the form of Eq.(50) is an upper bound of the value of kfic as defined in Eq.(51).

5.2 Model problem 2

Consider the steady diffusion–reaction problem with a distributed source term given by
Eq.(18) and homogeneous Dirichlet boundary conditions:

R(φ) := −k∆(φ) + sφ− f(x) (52)

For the current problem we design the HRPG method with α = 0. In the limit as k → 0
the problem reduces to the scaled L2-projection problem considered in §4. The discrete
upwinding operation on the Galerkin method, will introduce an artificial diffusion equivalent
to the following,

kdu = max

{[
s`2

6
− k
]
, 0

}
(53)

Note that ∀k ≤ (s`2/6) the critical non-oscillatory solution obtained via the discrete upwind-
ing process is identical to the solution obtained with k = 0. Thus in order to design the
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parameter β we can use the solution given by Eq.(19) to estimate the amount of nonlinear
diffusion that would be introduced by the HRPG method. Thus,

k∗(φh) :=
β

2

( |R(φh)|
|∇φh|

, 1
)

Ωe
h

= β
s`2

4
g(η) ≥ max

{[
s`2

6
− k
]
, 0

}
(54)

We define a dimensionless element number ω := (s`2/k) and consider g(η) = 1 (Type-II).
Thus,

β ≥ max

{
2

3

[
1− 6

ω

]
, 0

}
(55)

We remark that β depends only on the problem data and for the current model problem the
nonlinear (residual-based) diffusion k∗(φh) implemented in the HRPG method is nonzero and
equals kdu only for the elements in the vicinity of the discontinuity. In this way it differs from
the form of Eq.(51) which for the current model problem introduces a nonlinear diffusion kfic

(Eq.(51) using γ = 0) for all elements.

5.3 Model problem 3

Consider the steady convection-diffusion problem,

R(φ) := u∇(φ)− k∆(φ) (56)

For the current problem we design the HRPG method with α = 0. The discrete upwinding
operation on the Galerkin method, will introduce an artificial diffusion equivalent to the
following,

kdu = max

{[
|u|`
2
− k
]
, 0

}
(57)

The parameter β may be designed as follows:

|R(φh)|
|∇(φh)|

=
|u∇(φh)|
|∇(φh)|

= |u| (58)

⇒ k∗(φh) :=
β

2

( |R(φh)|
|∇(φh)|

, 1
)

Ωe
h

=
β

2
|u|` ≥ max

{[
|u|`
2
− k
]
, 0

}
(59)

⇒ β ≥ max

{[
1− 1

|γ|

]
, 0

}
(60)

Note that in contrast to the problem considered in §5.2 here we do not need the solution
to estimate the nonlinear diffusion introduced by the HRPG method. The expression for
β (Eq.60) is identical to the standard critical stabilization parameter obtained for upwind
techniques (see [57]).

5.4 Model problem 4

Consider the steady convection–diffusion–reaction problem:

R(φ) := u∇(φ)− k∆(φ) + sφ− f(x) (61)
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For the current problem we design the HRPG method again with α = 0. If linear finite
elements were used, the residual obeys the following relation:

|R(φh)| = |u∇(φh) + sφh − f | ≤ |u∇(φh)|+ |sφh − f | (62)

⇒ |R(φh)|
|∇(φh)|

=

∣∣∣∣u+
sφh − f
∇(φh)

∣∣∣∣ ≤ |u|+ |sφh − f |
|∇(φh)|

(63)

As it can be seen in Eq.(63), to estimate the nonlinear diffusion introduced by the HRPG
method we require the solution of the problem a priori. The simplest idea would be to use
the nodally exact solution. Unlike the solution used in §5.2, the analytical solution of the
current problem has a complex structure [41]. In order to retain simplicity in the design of β
we make a conjuncture of the results obtained in §5.2 and §5.3. The conjuncture is made such
that the designed expression for β would approach asymptotically the expressions obtained
in §5.2 and §5.3 as u→ 0 and s→ 0 respectively.

Assume that u � s and f(x) be defined as in Eq.(18). Thus we may approximate the
solution of the current problem to the one considered in §5.2. This assumption allows us to
use the solution defined by Eq.(19) to approximately estimate the following expression:

( |sφh − f |
|∇(φh)|

, 1
)

Ωe
h

≈ s`2

2
g(η) (64)

As u� s we make another approximation using Eq.(63) as follows:

|R(φh)|
|∇(φh)|

≈ |u|+ |sφh − f |
|∇(φh)|

(65)

Using the two approximations (Eq.64, Eq.65) the parameter β may be designed as follows:

k∗(φh) :=
β

2

( |R(φh)|
|∇(φh)|

, 1
)

Ωe
h

≈ β

2

[
|u|`+

s`2

2
g(η)

]
≥ max

{[
|u|`
2

+
s`2

6
− k
]
, 0

}
(66)

β := max

{[
2

3

(
|σ|+ 3

|σ|+ 2

)
−
(

4

ω + 4|γ|

)]
, 0

}
⇒


lim
u→0

β = max

{
2

3

[
1− 6

ω

]
, 0

}
lim
s→0

β = max

{[
1− 1

|γ|

]
, 0

} (67)

where, γ := (u`/2k) , ω := (s`2/k) and σ := (ω/2γ) = (s`/u) are the element Peclect number,
a velocity independent dimensionless number and the Damköler number respectively.
Remark : Eq.(66) does not mean that k∗(φh) = kdu for all elements and problem data. We
remind that under the assumption u � s and f(x) defined as in Eq.(18), the solution to
the current model problem is approximated as the one given by Eq.(19). This suggests that,
similar to the model problems in §4.2.2 and §5.2, the nonlinear (residual-based) diffusion
k∗(φh) equals kdu only for the elements in the vicinity of the layers. In general, as β is
independent of φh, the only information known a priori is that k∗(φh) is proportional to the
residual R(φh). The argument that this expression for β i.e. Eq.(67), would perform well
∀u, s is a conjecture based on the fact that we recover asymptotically the expressions for β
i.e. Eq.(55) and Eq.(60) as u → 0 and s → 0 respectively. The efficiency of this expression
for β is shown via various numerical examples (see §5.7).
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5.5 Model problem 5

Consider the transient convection–diffusion–reaction problem:

R(φ) := φ̇+ u∇(φ)− k∆(φ) + sφ− f(x) (68)

We now design the parameter β associated with the nonlinear perturbation term when the
linear perturbation terms exists (i.e. α 6= 0). The HRPG method after discretization by
linear finite elements will lead to the following system of equations.

(Galerkin terms)→ [M]Φ̇ + [uC + kD + sM]Φ − fg

(linear PG terms)→ +
α`

2
[Ct]Φ̇ +

α`

2
[uD + sCt]Φ − α`

2
fs

(nonlinear PG terms)→ +
β

2

( |R(φh)|
|∇(φ)|

, 1
)

Ωe
h

[D]Φ = 0

(69)

The above equation may be rearranged as follows

M{Φ̇ + sΦ}+ C{uΦ}+ Ct{α`
2

Φ̇ +
α`s

2
Φ}+ (k +

α`u

2
+ k∗(φh))DΦ = fg +

α`

2
fs (70)

where the expression for k∗(φh) is given by Eq.(32). We define for each element a measure δ
with the dimensions of the reaction coefficient.

δ := Φ̇� Φ ⇒ Φ̇ = δ � Φ (71)

where the vector operators � and � are understood to operate point-to-point division and
multiplication respectively. Thus in the design of the parameter β, we may model δ as a
non-linear reactive coefficient. For the fully discrete problem (after time discretization)δ may
be approximated to an element-wise positive constant for simplification. This idea had been
pointed out earlier in [44]. Also note that the convection matrix C is skew-symmetric. Hence
the transposed matrix Ct introduces a negative convection effect. Thus for each element we
define the effective convection, diffusion and reaction coefficients as follows:

ũ := u− α`s

2
− α`δ

2
; k̃ := k +

α`u

2
; s̃ := s+ δ (72)

The effective coefficients ũ, k̃ and s̃ will be used to design the parameter β. The following
effective element dimensionless numbers may be defined:

γ̃ :=
ũ`

2k̃
; ω̃ :=

s̃`2

k̃
; σ̃ :=

s̃`

ũ
=

ω̃

2γ̃
(73)

The parameter β is now defined as in Eq.(67) using these effective element numbers as follows:

β := max

{[
2

3

(
|σ̃|+ 3

|σ̃|+ 2

)
−
(

4

ω̃ + 4|γ̃|

)]
, 0

}
(74)

If the discretization in time is done using the implicit trapezoidal rule, we have

Φ̇ =
Φ̃− Φn

θ∆t
; Φn+1 =

1

θ
Φ̃ +

θ − 1

θ
Φn (75)
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where, ∆t is the time increment, n, n + 1 denote the previous and current time steps and
θ ∈ [0, 1] is a parameter that defines the scheme. θ = {0, 0.5, 1} define the forward Euler,
implicit midpoint and the backward Euler methods. For the fully discrete system and within
each element we evaluate the parameter δ and the residual as follows:

δ ≈ 1

θ∆t

‖ φ̃h − φnh ‖e∞
‖ φ̃h ‖e∞

(76)

R(φ̃h) ≈
φ̃h − φnh
θ∆t

+ u∇(φ̃h)− k∆(φ̃h) + sφ̃h − f (77)

where ‖ · ‖e∞ is the L∞norm. Note that as steady state is reached δ → 0. Thus for the
steady state problem and using α = 0 we recover the definition of the parameter β as given
by Eq.(67).

It remains to define the parameter α that controls the fraction of linear perturbation term
in the HRPG method. For the 1D convection–diffusion–reaction problem, the HRPG method
using α = 0 does solve a plethora of examples to give high-resolution stabilized results.
Nevertheless for the transient problem the presence of the linear perturbation terms improves
the convergence of the nonlinear iterations. Numerical experiments suggest α ∈ [0, 1/3]
which means that the approximations/conjecture used in the design strategy does not hold
for larger fractions of the linear perturbation term. The following expression for α was used
in the examples to come.

α := λ sgn(u) max

{[
1− 1

|γ|

]
, 0

}
; λ :=

1

3(1 +
√
|σ|)

(78)
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5.6 Summary

Residual R(φh) :=
∂φh
∂t

+ u∇(φh)− k∆(φh) + sφh − f(x)

The HRPG method
Find φh : [0, T ] 7→ V h such that ∀wh ∈ V h

0 we have,

a(wh, φh) +
∑
e

(α`
2

dwh

dx
,R(φh)

)
Ωe

h

+
(β`

2

|R(φh)|
|∇φh|

dwh

dx
,
dφh
dx

)
Ωe

h

= l(wh)

Petrov–Galerkin weight→ wh +

[
α`

2
+
β`

2
sgn[R(φh)]sgn[∇(φh)]

]
dwh

dx

Definitions

γ :=
u`

2k
; ω :=

s`2

k
; σ :=

s`

u

R(φ̃h) ≈
φ̃h − φnh
θ∆t

+ u∇(φ̃h)− k∆(φ̃h) + sφ̃h − f

φn+1
n =

(1

θ

)
φ̃h +

(θ − 1

θ

)
φnh ; ∆t = tn+1 − tn ; θ ∈ (0, 1)

λ :=
1

3(1 +
√
|σ|)

; δ ≈ 1

θ∆t

‖ φ̃h − φnh ‖∞
‖ φ̃h ‖∞

α := λ sgn(u) max

{[
1− 1

|γ|

]
, 0

}
ũ := u− α`s

2
− α`δ

2
; k̃ := k +

α`u

2
; s̃ := s+ |δ|

γ̃ :=
ũ`

2k̃
; ω̃ :=

s̃`2

k̃
; σ̃ :=

s̃`

ũ

β := max

{[
2

3

(
|σ̃|+ 3

|σ̃|+ 2

)
−
(

4

ω̃ + 4|γ̃|

)]
, 0

}

5.7 Examples

5.7.1 Example 1

We consider the convection–diffusion–reaction problem given by Eq.(1) in 1D. We study the
steady-state case with the following data : k = 1 and u, s 6= 0. The 1D domain is taken
as x ∈ [0, 1] and it is discretized with eight two-node linear elements. The values of u and
s are determined appropriately for different values of γ and ω. The results of the HRPG
method (using both λ = 0 and λ 6= 0) are compared with that of the Galerkin, Galerkin
with discrete upwinding (DU), SUPG, CAU, modified CAU and the FIC based stabilization
method presented in [41]. The error in the nonlinear iterations was measured by the following
norm:

‖ Φi+1 − Φi ‖e
‖ Φi+1 ‖e

(79)

where, ‖ · ‖e is the standard Eucleadian vector norm. A tolerance of 1e-5 was chosen as
the termination criteria. A maximum of 30 iterations were allowed. Note that the number
of iterations required by the nonlinear methods for convergence is displayed next to the
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corresponding legends. The nonlinear iterations were initialized by the solution obtained by
the DU method.

Figures 11 - 16 illustrate the solution obtained for the sourceless case (f = 0) and for
(γ, ω) = {(1, 5), (1, 20), (1, 120), (2, 2), (10, 4), (10, 20)} respectively. The Dirichlet boundary
conditions φpL := φ(x = 0) = 8 and φpR := φ(x = 1) = 3 were employed. The DU method is
robust and provides stable solutions. Unfortunately the accuracy achieved is at most first-
order and hence the solutions are generally over-diffusive. The FIC method presented in
[41] provides more accurate solutions and remarkably the nonlinear iterations converge with
just two iterations. Slight node-to-node oscillations around the exact solutions are observed
for the case γ = 10, ω = 4 viz. Figure 15a and is duly discussed in [41]. As expected the
SUPG method provides good solutions to all except the reaction-dominated cases viz. Figures
12b,13b. The CAU and modified CAU methods succeed in circumventing the instabilities for
the reaction-dominated cases but for these cases provide solutions that are more diffusive
than that of the DU method. The HRPG method provides good solutions for all the cases
considered. Note that for the reaction-dominated cases the solutions are less diffusive than
the DU, CAU and modified CAU methods. Also note that the solutions obtained by taking
λ = 0 is indistinguishable to that obtained by taking λ 6= 0. Nevertheless the nonlinear
iterations converge faster for the latter.

Figures 17,18 illustrate the solution obtained for the sourceless case (f = 0) with (γ, ω) =
(10, 200) and for Dirichlet boundary conditions (φpL, φ

p
R) = {(0, 1), (1, 0)} respectively. The

FIC method of [41] provides nodally exact to-the-eye solutions and the nonlinear iterations
converge within 2 iterations. The solutions obtained by the SUPG and CAU methods are
indistinguishable and exhibit instabilities for the latter boundary conditions viz. Figure 18b.
The modified CAU method circumvents these instabilities but instead provides solutions that
are more diffusive than the DU method. The HRPG method (both λ = 0 and otherwise)
succeed to provide stable solutions and are less diffusive than that obtained by the DU method.
Figure 17 shows that the HRPG method with λ = 0 converges in just one iteration while
using λ 6= 0 seven iterations were needed. This is a rare coincidence where the initial solution
provided by the DU method and the solution of the HRPG method with λ = 0 are closer
than the specified tolerance.

Figures 19,20 illustrate the solution obtained with (γ, ω) = (2, 0) and (f, φpL, φ
p
R) =

{(0, 0, 1), (u, 0, 0)} respectively. As expected the SUPG method provides nodally exact solu-
tions for these cases. The DU, CAU and HRPG methods provide stable solutions and are
indistinguishable from each other. The modified CAU solution is very similar to the solutions
of the former methods. For the sourceless case (f = 0) the solutions of the DU and FIC meth-
ods are indistinguishable. Unfortunately when f 6= 0 the nonlinear iterations associated with
the latter fail to converge. We believe that this behavior is due to the increased nonlinearity
associated with the definition of the stabilization parameters (See [41]).

5.7.2 Example 2

We consider again the convection–diffusion–reaction problem given by Eq.(1) in 1D. Now
we study the transient pure-convection problem, i.e. k, s, f = 0. The Dirichlet boundary
condition φ(x = 0) = 0 is employed. The following initial condition was used:

φ(x, t = 0) =

{
1 ∀ x ∈ [0.1, 0.2] ∪ [0.3, 0.4]
0 else

(80)
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Figure 11: Steady state; (γ, ω, f, φpL, φ
p
R) = (1, 5, 0, 8, 3). (a) Exact, Galerkin, FIC [41],

HRPG(λ = 0) and HRPG(λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU
solutions
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Figure 12: Steady state; (γ, ω, f, φpL, φ
p
R) = (1, 20, 0, 8, 3). (a) Exact, Galerkin, FIC [41],

HRPG(λ = 0) and HRPG(λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU
solutions
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Figure 13: Steady state; (γ, ω, f, φpL, φ
p
R) = (1, 120, 0, 8, 3). (a) Exact, Galerkin, FIC [41],

HRPG(λ = 0) and HRPG(λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU
solutions
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Figure 14: Steady state; (γ, ω, f, φpL, φ
p
R) = (2, 2, 0, 8, 3). (a) Exact, Galerkin, FIC [41],

HRPG(λ = 0) and HRPG(λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU
solutions
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Figure 15: Steady state; (γ, ω, f, φpL, φ
p
R) = (10, 4, 0, 8, 3). (a) Exact, Galerkin, FIC [41],

HRPG(λ = 0) and HRPG(λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU
solutions
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Figure 16: Steady state; (γ, ω, f, φpL, φ
p
R) = (10, 20, 0, 8, 3). (a) Exact, Galerkin, FIC [41],

HRPG(λ = 0) and HRPG(λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU
solutions
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Figure 17: Steady state; (γ, ω, f, φpL, φ
p
R) = (10, 200, 0, 0, 1). (a) Exact, Galerkin, FIC [41],

HRPG(λ = 0) and HRPG(λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU
solutions
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Figure 18: Steady state; (γ, ω, f, φpL, φ
p
R) = (10, 200, 0, 1, 0). (a) Exact, Galerkin, FIC [41],

HRPG(λ = 0) and HRPG(λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU
solutions
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Figure 19: Steady state; (γ, ω, f, φpL, φ
p
R) = (2, 0, 0, 0, 1). (a) Exact, Galerkin, FIC [41],

HRPG(λ = 0) and HRPG(λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU
solutions
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Figure 20: Steady state; (γ, ω, f, φpL, φ
p
R) = (2, 0, u, 0, 0). (a) Exact, Galerkin, HRPG(λ = 0)

and HRPG(λ 6= 0) solutions; (b) Exact, DU, SUPG, CAU and Mod.CAU solutions
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The above initial condition models a double rectangular pulse with simple discontinuities. The
amplitude spectrum of this function decays only as fast as the harmonic series and hence is
rich in high wave numbers. It is a challenging problem for the validation of any method for
the control of dispersive oscillations and accuracy. The 1D domain is taken as x ∈ [0, 1] and
it is discretized with 200 two-node linear elements. The time step was chosen as ∆t = 0.001s.
This corresponds to a Courant number C = 0.2. The error was measured using Eq.(79) and
a tolerance of 1e-4 was used. For the HRPG method with λ = 0 a tolerance of 1e-3 was
used. The nonlinear iterations at every time step were initialized by the solution obtained by
the SUPG method.

Figures 21,22 illustrate the solution obtained with the SUPG, CAU, modified CAU and
HRPG methods. As expected the SUPG solution exhibits dispersive oscillations viz. Figure
21a. Appreciable control over the dispersive oscillations is obtained in the CAU method viz.
Figure 21b. However slight crests and troughs do appear in the solution that gradually die
out in time. These crests and troughs are reduced in the solution obtained by the modified
CAU method at the cost of accuracy viz. Figure 21c. Best results were obtained with the
HRPG method with λ 6= 0 which exhibits better control over the dispersive oscillations and
maintains the symmetry of the initial solution viz. Figure 22b-c. On the other hand the
HRPG method with λ = 0 is more diffusive than with λ 6= 0 and needs more iterations per
time step for convergence viz. Figure 22a.

6 Extension to multidimensions

It is well known that the solution to the stationary convection–diffusion–reaction problem
may develop two types of layers: exponential and parabolic layers. The exponential layers
are usually found in the convection-dominant cases and near the boundary or close to the
regions where the source term is nonregular. Parabolic layers, which are of larger width than
exponential layers, are found in the reaction-dominant cases near the boundary or close to the
regions where the source term is nonregular and in the convection-dominated cases along the
characteristics of the solution. The later characteristic internal/boundary layers are usually
found only in higher dimensions and hence have no instances in 1D. For this reason a direct
extension of the definition of the stabilization parameters α, β derived for 1D will not be
efficient to resolve these layers. In the following we outline the approach to extend the HRPG
method to multidimensions but delay the details to a later work:

1. To design a nondimensional element number that quantifies the characteristic inter-
nal/boundary layers. By quantification we mean that it should serve a similar purpose
as the element Peclet number γ for the exponential layers in convection-dominant cases
and the dimensionless number ω := 2γσ for the parabolic layers in the reaction-dominant
cases.

2. Update the definition of the stabilization parameter β to include this new dimensionless
number. Of course this update takes effect only in higher dimensions.

3. Using this updated definition of the stabilization parameters the characteristic lengths
are calculated as: h := αili , H := (βi/|li|)[li ⊗ li]. Where li are frame-independent
element length vectors and αi, βi are calculated along these li. Thus for the 2D bilinear
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Figure 21: Transient pure convection; u = 1m/s, ` = 0.005m, ∆t = 0.001s. (a) SUPG
solution; (b) CAU solution; (c) Mod.CAU solution
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Figure 22: Transient pure convection; u = 1m/s, ` = 0.005m, ∆t = 0.001s. (a) HRPG(λ = 0)
solution; (b) HRPG(λ 6= 0) solution; (c) HRPG(λ 6= 0) solution (evolution plot)
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quadrilateral elements the characteristic lengths would be:

h := α1l1 + α2l2 ; H :=
β1

|l1|
[l1 ⊗ l1] +

β2

|l2|
[l2 ⊗ l2] (81)

4. Using h,H as defined above we calculate the perturbation ph associated with the HRPG
method via the Eq.(6). This completes the definition of the HRPG method in multidi-
mensions.

Remark : As noted in §2 the multidimensional HRPG method could be arrived at from the
FIC equations with an appropriate definition of the characteristic length as hfic := h+H · ûr.

7 Conclusions

A high-resolution Petrov–Galerkin method is presented for the 1D convection–diffusion–
reaction problem. The prefix ‘high-resolution’ is used here in the sense popularized by Harten,
i.e. second order accuracy for smooth/regular regimes and good shock-capturing in nonregular
regimes. The HRPG method could be understood as the combination of upwinding plus a non-
linear discontinuity-capturing operator. The distinction is that in general(multidimensions)
the upwinding provided by h is not streamline and the discontinuity-capturing provided by
H · ûr is neither isotropic nor purely crosswind. The HRPG form can be considered as a
particular class of the stabilized governing equations obtained via a finite calculus (FIC) pro-
cedure. For the 1D problem the HRPG method is similar to the CAU method with new
definitions of the stabilization parameters. The 1D examples presented demonstrate that the
method provides stabilized and essentially non-oscillatory i.e. monotone to-the-eye solutions
for a wide range of the physical parameters and boundary conditions. It is interesting to note
that the HRPG method without the linear upwinding term, i.e. using α = 0 does solve all the
steady-state examples to give high-resolution stabilized results. Nevertheless the presence of
the linear perturbation terms improves the convergence of the nonlinear iterations especially
for the transient problem.
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[5] Löhner R, Morgan K, Zienkiewicz OC. “The solution of non-linear hyperbolic equation systems
by the finite element method,” International Journal for Numerical Methods in Fluids 1984, Vol.
4, pp. 1043-1063.

[6] Hughes TJR, Franca LP, Hulbert GM. “A new finite element formulation for computational fluid
dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations,” Computer
Methods in Applied Mechanics and Engineering 1989, Vol. 73, pp. 173-189.

[7] Brezzi F, Bristeau MO, Franca LP, Mallet M, Rogé G. “A relationship between stabilized finite
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