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Abstract

For residual based stabilization methods like SUPG and FIC, the higher order deriva-
tives of the residual that appear in the stabilization term vanish when simplicial elements
are used. The Sub-Grid Scale method using Orthogonal Sub-Scales (OSS) attempts to
recover the lost consistency by using a fine-scale projected residual in the stabilization
term. The FIC method may also be cast into an OSS form with very little manipula-
tion using an auxiliary convective projection equation. This paper discusses the gain/loss
by recovering the consistency of the discrete residual in the stabilization terms via the
form that includes the convective projection (as in the OSS method). We present the
von Neumann analysis of the FIC method with recovered consistency (FIC RC) for the
1D convection diffusion problem and we compare it to the standard Bubnov-Galerkin
linear FEM and FIC/SUPG methods. The transient analysis is done by examining the
discrete dispersion relation (DDR) of the stabilization methods. The spectral results for
the semi-discrete and fully-discrete problem are presented with time integration done by
the Trapezoidal and BDF2 schemes. The effect of lumping the effective mass matrix T is
considered relative to using a consistent form. The effect of refinement in space and time
is also discussed. Finally, an optimal expression for the stabilization parameter for the
FIC RC method on a uniform grid and for the steady-state is given and its performance
in the transient mode is discussed.

Keywords: Finite element; stabilized methods; finite calculus; consistent discrete-
residual; discrete dispersion relation

1 Introduction

In many transport processes arising in physical problems, convection essentially dominates
diffusion. The design of numerical methods for such problems that reflect their almost hy-
perbolic nature and guarantee that the discrete solution satisfies the physical conditions is a
subject that has been widely studied. In particular for the convection-diffusion problem the
standard Galerkin finite element method leads to numerical instabilities for the convection
dominated case. Several stabilization methods, for instance the Streamline-Upwind Petrov-
Galerkin (SUPG), Galerkin Least Square (GLS), Sub-Grid Scale (SGS), SGS with Orthogonal
Sub-scales (OSS) etc., have been designed to overcome this numerical instability. A thorough
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comparison of some of these methods from the point of view of their formulation and the mo-
tivations that lead to them can be found in [1]. Also stabilization procedures based on Finite
Calculus (FIC) have been developed as a general purpose tool for improving the stability and
accuracy of the convection-diffusion problem [2–5]. A residual correction method based on
FIC was presented in [6] and is shown to yield an equivalent formulation to an OSS form [7]
with very little manipulation.

For the convection diffusion problem using the SUPG or FIC methods, the higher order
term (here the diffusion term) that appears in the stabilization term vanish when simplicial
elements are used. In [6] it is shown that for the elasticity problem, the form that includes the
projected gradient of pressure into the stabilization terms (motivated by the OSS method) is
essential to obtain accurate numerical results which converge in a more monotone manner and
are less sensitive to the value of the stabilization parameter. In [8] a method was presented to
globally reconstruct a continuous approximation to the diffusive flux for linear finite elements
using a L2 projection and shown, in some cases (when advection and diffusion are on a
par), to greatly improve accuracy. It is important to note that again this improved accuracy
is demonstrated for other related unknowns of the problem (like pressure) and not for the
transported unknown (say velocity). Also when convection dominates diffusion there is little
effect in the inclusion of the recovered diffusive flux. On the other hand, consistency recovery
following the OSS philosophy is independent from the diffusive term. These observations are
the motivation to investigate in detail the benefits of including similar projections for the
convection diffusion problem following the OSS philosophy. In other words, we try to answer
the question - what do we gain/loose by recovering the consistency of the discrete residual in
the stabilization terms for the convection-dominated case via the introduction of OSS-type
convective projection ?

The von Neumann analysis for the Galerkin and SUPG method is relatively well known
[9]. Relevant literature on the type of analysis presented here may be found in [10]. First,
we present the von Neumann analysis for the 1D FIC method with recovered consistency
(FIC RC). This is achieved by including the convective projection into the stabilization term
(motivated by the OSS method). It is then shown that in 1D the FIC and FIC RC methods are
equivalent to the SUPG and OSS methods respectively. Consequently the comparisons made
between the former methods may be carried over to the later methods. The transient analysis
is done by examining the discrete dispersion relation (DDR) of the stabilization methods.
The explanation for the occurrence of wiggles/oscillations in the transient evolution of the
numerical solution was explained by examining the dispersion relations of the continuous
and discrete problems in [11]. It has been found that beyond a certain wavenumber ξd the
continuous and the discrete dispersion relations diverge [11, 12]. This wavenumber (ξd) is
referred to as the phase departure wave number in [12]. If the bandwidth of the amplitude
spectra of any given initial function has wavenumbers greater than ξd, the initial function
suffers a change of form (with wiggles/oscillations) in its transient evolution. Examining
the respective DDRs, we seek to find if the stabilization methods provide any improvements
in the solutions. A comparison of the DDR of the FIC RC/OSS method is done with the
DDRs of the Galerkin and FIC/SUPG methods for three standard time integration schemes.
Also, the range of wavenumbers to which the DDR agrees with the continuous dispersion
relation is shown to extend, should a consistent “effective” mass matrix be preferred to a
lumped one. Next, it is shown that unlike the FIC/SUPG method, the FIC RC/OSS method
introduces a certain rearrangement in the equation stencils at nodes on and adjacent to the
domain boundary. Thus using a uniform expression for the stabilization parameter (α) will
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lead to enhanced localized oscillations at the boundary. For the 1D steady-state problem ,
we present a new expression for α which is optimal for uniform grids and provides negligible
damping when used in the transient mode. Unfortunately for non-uniform grids, it leads to
weak node-to-node oscillations.

2 Transient Convection Diffusion Equation

2.1 Problem Statement

The statement of the multi-dimensional problem is as follows:

∂φ

∂t
+ u ·∇φ−∇ · (k∇φ)− f = 0 in Ω (1a)

φ(x, t = 0) = φo(x) in Ω (1b)

φ = φp on ΓD (1c)

k∇φ · n = qp on ΓN (1d)

where, u is the convection velocity, k is the diffusion, f is the source, φ(x, t) is the
transported variable, φo(x) is the initial solution, φp and qp are the prescribed values of
φ and the diffusive flux at the Dirichlet and Neumann boundaries respectively. The FIC
formulation of this problem (neglecting the time stabilization terms [4]) is as follows:

r − 1

2
h ·∇r = 0 in Ω (2a)

φ(x, t = 0) = φo(x) in Ω (2b)

φh = φp on ΓD (2c)

k∇φh · n +
1

2
(h · n)r = qp on ΓN (2d)

r :=
∂φ

∂t
+ u ·∇φ−∇ · (k∇φ)− f (2e)

Let
(
·, ·
)

and
(
·, ·
)

ΓN
denote the L2(Ω) and L2(ΓN ) inner products respectively. The

variational form of the problem (1) can be expressed as follows: Find φ : [0, T ] 7→ V such
that ∀w ∈ V0 we have,

a
(
w, φ

)
= l
(
w
)

(3a)

a
(
w, φ

)
:=
(
w,
∂φ

∂t

)
+
(
w,u ·∇φ

)
+
(
∇w, k∇φ

)
(3b)

l
(
w
)

:=
(
w, f

)
+
(
w, qp

)
ΓN

(3c)

where V := {w : w ∈ H1(Ω) and w = φp on ΓD}, V0 := {w : w ∈ H1(Ω) and w =
0 on ΓD}. For the FIC equations the variational form can be expressed as follows: Find
φ : [0, T ] 7→ V such that ∀w ∈ V0 we have,

a
(
w, φ

)
+

1

2

(
∇ · (hw), r

)
= l
(
w
)

(4)
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The calculation of the residual contribution in the stabilization term can be simplified if
we introduce the projection of the convective term π via an auxiliary equation defined as,

π = u ·∇φ− r (5)

We express the residual, r, that occurs in the stabilization term
(
∇ · (hw), r

)
as a function

of π. Thus π becomes an addendum to the set of unknowns to be found. The integral
equation system is now augmented forcing that the residual r expressed in terms of π via
Eq.(5) vanishes (in average) over the analysis domain. Problem (4) after the addendum of
the convective projection π is expressed as follows: Find φ : [0, T ] 7→ V and π ∈ H1(Ω) such
that ∀(w, z) ∈ (V0(Ω), H1(Ω)),

a
(
w, φ

)
+

1

2

(
∇ · (hw),u ·∇φ− π

)
= l
(
w
)

(6a)(
z, π
)

=
(
z,u ·∇φ

)
(6b)

We remark that the projection of the convective term provides consistency to the formu-
lation, i.e. the system of equations (6) have the residual form which vanishes for the exact
solution. Henceforth we refer to the formulation given by the equation (6) as the FIC formu-
lation with recovered consistency (FIC RC). The convective projection is expected to capture
the otherwise lost effect of higher order terms in the residual when simplicial elements are
used. The introduction of the convective projection variable π was deduced from the OSS
approach in [7].

2.2 Dispersion Relation in 1D

Any equation that admits plane wave solutions of the form exp[i(ωt − ξx)], but with the
property that the speed of propagation of these waves is dependent on ξ, is generally referred
to as a dispersive equation. Here ξ, ω are the angular wave-number and the frequency,
respectively. The equation that expresses ω as a function of ξ is known as the dispersion
relation. Generally the transient convection-diffusion equation is a dispersive equation. In the
limit, when diffusion tends to zero and the equation morphs into a pure convection problem,
it tend to become non-dispersive [11]. In 1D and for the sourceless case (f = 0), Eq.(1a) can
be expressed as follows:

∂φ

∂t
+ u

∂φ

∂x
− k∂

2φ

∂x2 = 0 (7)

For a given discretization of size ` in space and an increment θ in time, we express the Courant
and Peclet numbers as C = uθ

` and γ = u`
2k . We write down the dispersion relation (Eq. 8) for

the continuous problem (Eq. 7) by propagating the plane wave solution φ =exp[i(ωt− ξx)].
From Eq.(8) we obtain, taking the limit k → 0 or γ →∞, the dispersion relation for the pure
convection problem.

ω = uξ + ikξ2 (8a)

ωθ = C(ξ`) + i
C

2γ
(ξ`)2 (8b)

Now let us consider the amplification of the solution from time step n to n+1 and at some
given spatial point. The amplification parameter β as defined in [12] is given by Eq.(9). It
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can be clearly seen that β is stationary in time and uniform in space. The amplification and
phase shift per time step are given by the magnitude and argument of Eq.(9), respectively.
Thus for the pure convection problem we can see that the amplification is unity, i.e. |β| = 1.
The phase and group velocities are given by the Eqs. (10a) and (10b) respectively [13].

β =
φn+1
j

φnj
= exp [iωθ] = exp

[
−kθξ2

]
exp [iuθξ] = exp

[
− C

2γ
(ξ`)2

]
exp [iC(ξ`)] (9)

Vp(ξ) =
ω(ξ)

ξ
(10a)

Vg(ξ) =
∂ω(ξ)

∂ξ
(10b)

3 FE Discretization

3.1 Semi-Discrete Form

The semi-discrete (continuous in time, discrete in space) counterpart of the FIC method (4)
can be written as follows: Find φh : [0, T ] 7→ V h such that ∀wh ∈ V h

0 we have,

a
(
wh, φh

)
+
∑
e

1

2

(
∇ · (hwh), rh

)
Ωe = l

(
wh
)

(11)

where V h ⊂ V and V h
0 ⊂ V0. The stabilization term in Eq.(11) has been expressed as a sum of

the element contributions to allow for inter-element discontinuities in the term ∇rh of Eq.(2),
where rh := r(φh) is the residual of the FE approximation of the infinitesimal governing
equation and

(
·, ·
)

Ωe denote the L2(Ωe) inner product. Similarly the discrete counterpart of

the FIC RC method (6) can be written as: Find φh : [0, T ] 7→ V h and πh ∈ H1(Ω) such that
∀(wh, zh) ∈ (V h

0 (Ω), H1(Ω)),

a
(
wh, φh

)
+
∑
e

1

2

(
∇ · (hwh),u ·∇φh − πh

)
Ωe = l

(
wh
)

(12a)(
zh, πh

)
=
(
zh,u ·∇φh

)
(12b)

The variables in the Eqs.(11) and (12) interpolated by finite element shape functions Na

can be expressed as follows:

φh = Naφa, πh = Naπa, wh = Nawa, zh = Naza (13)

where a is the spatial node index. The discrete problems (11) and (12) can be written in
matrix notation via Eqs.(14) and (15), respectively, as follows:

[M + S2]Φ̇ + [C + D + S1 + S3]Φ = fg + fs (14)

MΦ̇ + [C + D + S1]Φ− S2Π = fg (15a)

MΠ−CΦ = 0 (15b)
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where Φ := {φa} and Π := {πa} represent the vector of nodal unknowns. The element
contributions to the matrices and vectors in Eqs.(14) and (15) are given by

Ce
ab =

(
Na,u ·∇N b

)
Ωe , De

ab =
(
∇Na, k∇N b

)
Ωe (16a)

Me
ab =

(
Na, N b

)
Ωe , S1eab =

1

2

(
∇ · (hNa),u ·∇N b

)
Ωe (16b)

S2eab =
1

2

(
∇ · (hNa), N b

)
Ωe , S3eab = −1

2

(
∇ · (hNa),∇ · (k∇N b)

)
Ωe (16c)

fgea =
(
Na, f

)
Ωe +

(
Na, qp

)
ΓN
, fsea =

1

2

(
∇ · (hNa), f

)
Ωe (16d)

Note that Eq.(15b) correspond to the L2-projection of the term u ·∇φh onto the space
spanned by the shape functions. Whenever the later term admits discontinuities the projection
is non-monotone [7]. A monotone projection of the convective term can be achieved if the
mass matrix M that appears in Eq.(15b) is lumped. Also the expression for Π will have local
support only when M is lumped. This feature allows us to study generic nodal equation
stencils for the interior of the domain. Henceforth we always consider the Eq.(15b) with M
lumped. Eqs.(14) and (15) may be expressed in a general form as shown in Eq.(17). Table 1
defines the corresponding matrices for the FIC and FIC RC methods.

TΦ̇ + [C + D + S]Φ = f (17)

where matrix T is the ’effective’ mass matrix.

FIC FIC RC

T-lumped ML + S2 ML

T-consistent M + S2 M

S S1 + S3 S1− S2M−1
L C

f fg+fs fg

Table 1: Matrix definitions for FIC and FIC RC methods

Note that for the direction of h being the same as that of the velocity u, i.e. h = 2τu and
assuming τ constant within an element, the form of the stabilization term

(
∇ · (hwh), rh

)
Ωe

in Eq.(11) is identical to that of the standard SUPG method. Thus with this choice of h
the FIC and FIC RC methods are identical to the SUPG and OSS (orthogonal sub-scales)
methods respectively. The general direction of h introduces naturally stabilization along the
streamlines and also along the directions of the gradient of the solution transverse to the
velocity vector. The FIC formulation therefore incorporates the best features of the SUPG
and the shock-capturing methods. Applications of the FIC-FEM formulation to a wide range
of convection-diffusion problems with sharp gradients are presented in [14]. We remark that in
1D (assuming h constant within an element) the FIC and the FIC RC methods are identical
to the SUPG and OSS methods respectively. Thus the conclusions made between the FIC
and FIC RC methods may be carried over to those between SUPG and OSS methods.

3.2 DDR in 1D

The DDR of the semi-discrete problem (semi-DDR) and when the temporal terms are dis-
cretized using two class of time discretization schemes are investigated in this section. The
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time discretization schemes considered are the trapezoidal scheme and the second-order back-
ward differencing formula (BDF2). The effects on the numerical dispersion due to the choice
of the form of the effective mass matrix T (lumped or consistent) in Eq.(17) are also studied.
The flag lumped or consistent refers only to the matrix T as defined in Table 1 for the FIC
and FIC RC methods. The DDRs are written by inserting a plane wave solution of the form
φ = exp[i(ωt − ξx)] into the corresponding equation stencils. Taking the limit γ → ∞ we
recover the DDR for the pure convection problem.

3.2.1 Semi-DDR

We study the equation stencil for an interior node of the semi-discrete problem given by
Eq.(17) with f = 0 in 1D. For a compact representation of the stencils we introduce the
following definition,

(?) := (
u

2
)(φj+1 − φj−1)− (

k

`
+
uα

2
)(φj+1 − 2φj + φj−1) (18)

FIC/SUPG method :

(
`

6
)
[
(
−3α

2
)φ̇j+1 + 6φ̇j + (

3α

2
)φ̇j−1

]
+ (?) = 0,T-lumped (19a)

(
`

6
)
[
(1− 3α

2
)φ̇j+1 + 4φ̇j + (1 +

3α

2
)φ̇j−1

]
+ (?) = 0,T-consistent (19b)

FIC RC/OSS method :

` φ̇j + (?) + (
uα

8
)(φj+2 − 2φj + φj−2) = 0,T-lumped (20a)

(
`

6
)(φ̇j+1 + 4φ̇j + φ̇j−1) + (?) + (

uα

8
)(φj+2 − 2φj + φj−2) = 0,T-consistent (20b)

Making α = 0 in Eqs. (19) and (20) we recover the standard Galerkin method. The
Semi-DDRs for all the methods and for the T-lumped, T-consistent cases can be expressed
in a generic and compact manner as follows:

ωh = −i B
θA

(21)

where,

A :=



1

C
Galerkin, FIC RC/OSS methods, T-lumped

2 + cos(ξ`)

3C
Galerkin, FIC RC/OSS methods, T-consistent

1

C
+ i

α

2C
sin(ξ`) FIC/SUPG methods, T-lumped

2 + cos(ξ`)

3C
+ i

α

2C
sin(ξ`) FIC/SUPG methods, T-consistent

(22a)

B :=



i sin(ξ`)− 2 sin2(
ξ`

2
)

(
1

γ

)
Galerkin method

i sin(ξ`)− 2 sin2(
ξ`

2
)

(
1

γ
+ α

)
FIC/SUPG methods

i sin(ξ`)− 2 sin2(
ξ`

2
)

(
1

γ
+ α sin2(

ξ`

2
)

)
FIC RC/OSS methods

(22b)
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3.2.2 Trapezoidal Scheme

The structure of the equation stencil for an interior node with respect to the spatial indices
is the same as in the semi-discrete problem. Henceforth we express the fully discrete system
in the matrix notation only.

T · Φn+1 − Φn

θ
+ [C + D + S] · Φn+σ = 0 (23a)

Φn+σ := σ Φn+1 + (1− σ) Φn (23b)

Making σ = {0, 0.5, 1} we recover the Forward Euler, Crank-Nicholson and Backward Euler
schemes respectively. The DDR for the trapezoidal scheme can be expressed in terms of A
and B defined in Eq.(22) as follows,

exp [iωhθ] =
A+ (1− σ)B

A− σB
or equivalently, (24a)

tan

(
ωhθ

2

)
= −i B

2A+ (1− 2σ)B
(24b)

3.2.3 BDF2 Scheme

The fully discrete system of equations after time discretization by the BDF2 scheme is given
by,

T · 3Φn+1 − 4Φn + Φn−1

2θ
+ [C + D + S] · Φn+1 = O (25)

The DDR for the BDF2 scheme is a quadratic relation in exp[iωhθ]. The solution to the
quadratic equation gives two expressions for the DDR, which can be expressed as follows:

exp [iωhθ] =
2A+

√
A2 + 2AB

3A− 2B
(26a)

exp [iωhθ] =
2A−

√
A2 + 2AB

3A− 2B
(26b)

We remark that the solution given by Eq.(26b) predicts negative values of <(ωh)1 for pos-
itive wave-numbers. Thus, we consider the solution given by Eq.(26a) as the only acceptable
solution.

3.3 DDR Plots

The DDRs presented in the previous section represent the frequency as a function of six
independent variables, i.e. ωh := ωh(ξ, `, θ, C, γ, α). For a feasible graphical representation of
the DDRs we freeze some of them and normalize the frequency and wavenumbers to retain
maximum generality. In the DDR plots we consider only the pure convection problem (k = 0).
The stabilization parameter α = 1.0 is chosen. This corresponds to the optimal value for the
SUPG/FIC method in 1D and for a uniform mesh. This choice is made for convenience and
comparison of the effects of the stabilization term introduced by the considered methods. Note
that the DDRs are periodic in ξ and the corresponding fundamental domain is ξ ∈ [−π/`, π/`].

1The real and imaginary parts of ωh are denoted as <(ωh) and =(ωh), respectively
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The Nyquist frequency in space is ξnq = π/` and in time is ωnq = π/θ. Thus in the DDR
plots we do not consider wavenumbers and frequencies beyond the Nyquist limits. It can be
shown with respect to the exact dispersion relation (Eq. 8) that this condition corresponds
to choosing C ≤ 1. We normalize the wavenumber ξ by the Nyquist limit ξnq, i.e. ξ∗ = ξ/ξnq.
The frequency ωh is normalized as ω∗h = ωh/(uξnq) = ωhθ/(Cπ) = ωh`/(uπ). The DDRs are
now expressed with respect to the normalized wavenumber and frequency, i.e. ω∗h := ω∗h(ξ∗, C).
The plotting domain considered is (ξ∗, C) = (0, 1)× (0, 1).

3.3.1 Semi-discrete case

For the semi-discrete problem the DDR no longer depends on θ. The frequency ω∗h is now
only a function of ξ∗, i.e. ω∗h := ω∗h(ξ∗). The amplification at time tn = nθ is given by
exp[−=(ωh)tn] = exp[−=(ω∗h)π(utn/`)] = exp[−=(ω∗h)πCn]. This means that should =(ω∗h) 6=
0 the amplification at any given time is independent of the time step θ but dependent on the
space discretization `. Thus we present 1D plots for the following:

• Plot of <(ω∗h) vs ξ∗. The departure wavenumber ξ∗d is marked such that ∀ ξ∗ ≤
ξ∗d we have |<(ω∗ − ω∗h)| ≤ 0.001 (Figure 1).

• Amplification plots using C = 0.1 and at times θ, 2θ, 100θ, 200θ, and 300θ sec (Figure
2).

3.3.2 Fully discrete case

For the fully discrete case the time integration schemes considered are: the backward Euler,
Crank-Nicholson and BDF2. The frequency is now a function of both ξ∗ and C, i.e. ω∗h :=
ω∗h(ξ∗, C). The amplification at time tn = nθ is given by exp[−=(ω∗h)π(utn/`)]; the same as
for the semi-discrete case except for the fact that ω∗h is now dependent on C also. Contour
plots are presented for the following,

• log10(|<(ω∗ − ω∗h)|) vs. (ξ∗, C). The contour of values {−5,−4,−3,−2,−1} are shown
(Figures 3, 5 and 7).

• log10(=(ω∗h)) vs. (ξ∗, C). The contour of values {−3,−2.5,−2,−1.5,−1,−0.5, 0} are
shown (Figures 4, 6 and 8).

Only the contour plots for the normalized group velocity, i.e. ∂ω∗h/∂ξ
∗ vs (ξ∗,C), for the

Crank-Nicholson scheme have been presented (Figure 9). The original group velocity can be
recovered as follows: ∂ωh/∂ξ = u ∂ω∗h/∂ξ

∗.

3.4 Discussion

It can be seen from the DDR plots that every discrete model and also the semi-discrete
model of the continuous problem diverges from the exact dispersion relation beyond a certain
wave-number, here ξ∗d (Figures 1, 3, 5 and 7). For the semi-discrete case, ξ∗d is marked in
the plots and for the fully discrete case ξ∗d is a contour line given by the value −3. ξ∗d is
greater when we use a consistent mass matrix for the transient terms in the formulation.
Thus, one should expect better phase fidelity over a wider range of wave numbers using a
consistent mass matrix. The gain in the value of ξ∗d from lumped T case to the consistent
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Figure 1: Plot of ω∗h vs ξ∗ for the semi-discrete problem. Frequencies ω∗ and ω∗h correspond
to the continuous and discretized problems respectively. α = 1.0 is used.
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Figure 2: Amplification plots of the semi-discrete problem for the FIC/SUPG and
FIC RC/OSS methods. α = 1.0 and C = 0.1 are used. The amplification for the Galerkin
method is not shown here as it is equal to 1

11



−
5

−
5

−
5

−
5

−
5

−
5

−
4

−
4

−
4

−
4

−
4

−
4

−
3

−
3

−
3

−
3

−
3

−
3

−
2

−
2

−
2

−
2

−
2

−
2

−
1

−
1

−
1

−
1

−
1

−
1

C
ou

ra
nt

 N
um

be
r 

C

Normalized Wavenumber ξ*

Backward Euler, Galerkin, Lumped

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 −
5

−
5

−
5

−
5

−
5

−5

−
4

−
4

−
4

−
4

−4

−4

−
3

−
3

−
3

−3

−3

−3

−
2

−
2

−2

−2

−2

−2

−1

−1

−1

−1

−1
−

1

C
ou

ra
nt

 N
um

be
r 

C
Normalized Wavenumber ξ*

Backward Euler, Galerkin, Consistent

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

−
5

−
5

−
5

−
5

−
5

−
5

−
4

−
4

−
4

−
4

−
4

−
4

−
3

−
3

−
3

−
3

−
3

−
3

−
2

−
2

−
2

−
2

−
2

−
2

−
1

−
1

−
1

−
1

−1
−1

C
ou

ra
nt

 N
um

be
r 

C

Normalized Wavenumber ξ*

Backward Euler, FIC/SUPG, Lumped

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 −
5

−
5

−
5

−
5

−
5

−5

−5

−
4

−
4

−
4

−
4

−4

−4
−4

−4

−4

−4

−
3

−
3

−
3

−3

−3

−3 −3
−3

−3−3

−3

−
2

−
2

−2

−2

−2

−2

−2

−2−2

−2 −2

−2

−1
−1

−1

−1

−1

−1

−1−1 −1

C
ou

ra
nt

 N
um

be
r 

C

Normalized Wavenumber ξ*

Backward Euler, FIC/SUPG, Consistent

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

−
5

−
5

−
5

−
5

−
5

−
5

−
4

−
4

−
4

−
4

−
4

−
4

−
3

−
3

−
3

−
3

−
3

−
3

−
2

−
2

−
2

−
2

−
2

−
2

−
1

−
1

−
1

−
1

−
1

−
1

C
ou

ra
nt

 N
um

be
r 

C

Normalized Wavenumber ξ*

Backward Euler, FIC_RC/OSS, Lumped

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 −
5

−
5

−
5

−
5

−
5

−5

−
4

−
4

−
4

−
4

−4

−4

−
3

−
3

−
3

−3
−3

−3

−
2

−
2

−2
−2

−2

−2
−

1
−

1
−1

−1

−1

−1

C
ou

ra
nt

 N
um

be
r 

C

Normalized Wavenumber ξ*

Backward Euler, FIC_RC/OSS, Consistent

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 3: Contour plot of log10[<(|ω∗h−ω∗|)] for the backward Euler scheme. α = 1.0 is used.
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Figure 4: Contour plot of log10[=(ω∗h)] for the backward Euler scheme. α = 1.0 is used.
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Figure 5: Contour plot of log10[<(|ω∗h − ω∗|)] for the Crank-Nicholson scheme. α = 1.0 is
used.
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Figure 6: Contour plot of log10[=(ω∗h)]for the Crank-Nicholson scheme. α = 1.0 is used. The
plots for the Galerkin method is not shown here as =(ω∗h) = 0

15



−
5

−
5

−
5

−
5

−
5

−
5

−
4

−
4

−
4

−
4

−
4

−
4

−
3

−
3

−
3

−
3

−
3

−
3

−
2

−
2

−
2

−
2

−
2

−
2

−
1

−
1

−
1

−
1

−
1

−
1

C
ou

ra
nt

 N
um

be
r 

C

Normalized Wavenumber ξ*

BDF2, Galerkin, Lumped

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 −
5

−
5

−
5

−
5

−
5

−5

−
4

−
4

−
4

−
4

−4

−4

−
3

−
3

−
3

−3

−3

−3

−
2

−
2

−2

−2

−2

−2
−1

−1

−1

−1

−1
−

1

C
ou

ra
nt

 N
um

be
r 

C
Normalized Wavenumber ξ*

BDF2, Galerkin, Consistent

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

−
5

−
5

−
5

−
5

−
5

−
5

−
4

−
4

−
4

−
4

−
4

−
4

−
3

−
3

−
3

−
3

−
3

−
3

−
2

−
2

−
2

−
2

−
2

−
2

−
1

−
1

−
1

−
1

−
1

−
1

C
ou

ra
nt

 N
um

be
r 

C

Normalized Wavenumber ξ*

BDF2, FIC/SUPG, Lumped

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 −
5

−
5

−
5

−
5

−
5

−5

−5

−5

−
4

−
4

−
4

−
4

−4

−4

−4 −4

−4

−4

−
3

−
3

−
3

−3

−3 −3

−3
−3

−3
−3

−3

−3

−
3

−3

−
2

−
2

−2

−2

−2 −2 −2

−2

−2−
2

−2

−2 −2

−2

−1

−1

−1

−1

−1

−1

−1

−
1

−1 −1

C
ou

ra
nt

 N
um

be
r 

C

Normalized Wavenumber ξ*

BDF2, FIC/SUPG, Consistent

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

−
5

−
5

−
5

−
5

−
5

−
5

−
4

−
4

−
4

−
4

−
4

−
4

−
3

−
3

−
3

−
3

−
3

−
3

−
2

−
2

−
2

−
2

−
2

−
2

−
1

−
1

−
1

−
1

−
1

−
1

C
ou

ra
nt

 N
um

be
r 

C

Normalized Wavenumber ξ*

BDF2, FIC_RC/OSS, Lumped

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 −
5

−
5

−
5

−
5

−
5

−5

−
4

−
4

−
4

−
4

−4

−4

−
3

−
3

−
3

−3

−3

−3

−
2

−
2

−2

−2

−2

−2
−1

−1

−1

−1

−1

−1

−1−1

−
1

C
ou

ra
nt

 N
um

be
r 

C

Normalized Wavenumber ξ*

BDF2, FIC_RC/OSS, Consistent

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 7: Contour plot of log10[<(|ω∗h − ω∗|)] for the BDF2 scheme. α = 1.0 is used.
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Figure 8: Contour plot of log10[=(ω∗h)] for the BDF2 scheme. α = 1.0 is used.
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Figure 9: Real part of the normalized group velocity ∂ω∗h/∂ξ
∗ vs. ξ∗ for the Crank Nicholson

scheme; α = 1.0 is used.
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T case gradually decreases as the Courant number C increases (except for a certain range of
the Courant number C for the FIC/SUPG method).

We now examine the differences in the DDR plots between the Galerkin method and
the DDR plots of the FIC/SUPG and FIC RC/OSS methods. It is interesting that the
stabilization terms introduced by the FIC RC/OSS method do not alter much the location of
the phase departure wave-number ξ∗d. On the other hand, the stabilization terms introduced
by the FIC/SUPG method contribute to the T matrix (Table 1). Although for higher Courant
number C the effect on the location of ξ∗d is negligible, significant alterations in ξ∗d are found
for a lower C and a consistent T matrix (Figures 3, 5 and 7). When T is lumped, all the
methods give similar patterns for ξ∗d indicating that stabilization terms have no role to play
in the improvement of the DDRs.

Next, we examine the effect of the variation in C on the <(ω∗h) vs ξ∗ relation for the FIC
and SUPG methods with consistent T matrix and the Crank Nicholson scheme. Again, we
choose ξ∗d using the criterion: ∀ ξ∗ ≤ ξ∗d we have |<(ω∗ − ω∗h)| ≤ 0.001. In Figure 5 this
corresponds to the contour line for the value −3. It can been seen in the semi-discrete case
that <(ω∗h) > <(ω∗) for lower wavenumbers (Figure 1). In addition, the error <(ω∗h−ω∗) first
increases and later decreases. This behavior is exhibited in the fully discrete case too. Thus,
there will be multiple contours of the same value in the log10(|ω∗h − ω∗|) vs (ξ∗, C) contour
plots. In this case ξ∗d is the smallest ξ∗ on the contours. For instance, choosing C = 0.4 for
the FIC and SUPG methods we find ξ∗d ≈ 0.35, where as for the Galerkin, FIC RC and OSS
methods we find ξ∗d < 0.2 (Figure 5). Thus, there is a significant improvement in the DDR for
the FIC and SUPG methods for this value of C. It is interesting to note that for C ≤ 0.1 the
variation of DDR with C is insignificant. Similar conclusion can be made for the backward
Euler and BDF2 schemes from their respective DDR plots.

It can be seen from the amplification plots (Figures 2, 4, 6 and 8) that for the same
value of α (here α = 1.0) and using a consistent T matrix, the damping associated with
the FIC/SUPG method is relatively less than that of the FIC RC/OSS method, though the
gain is not significant for low wavenumbers. On the other hand, using a lumped T matrix
the difference in the amplification associated with FIC/SUPG and FIC RC/OSS methods is
insignificant. It can also be seen that unlike the notable differences in the location of ξ∗d, the
differences in the amplification due to lumping the T matrix is insignificant.

An important aspect is the effect of group velocity. This is more evident when the trans-
ported function is periodic and resembles a sinusoid wave train. For such functions, the Fourier
transform is a narrow peak concentrated around the characteristic angular wave number of
the function. For such problems the effect of the group velocity is more significant than that
of phase velocity. If the DDR predicts a deviation in the group velocity then the wave train
travels at that deviant velocity (Example 5.3).

4 Stabilization Parameters

In this section, the optimal expressions of the stabilization parameters for the FIC RC method
in 1D and on a uniform mesh are proposed. We consider the steady-state form of the discrete
problem (17) for the sourceless case (f = 0). The equation stencil for an interior node j is as
follows:

(
u

2
)[φj+1 − φj−1]− (k +

uh

2
)[
φj+1 − 2φj + φj−1

`
] + (

uh

8
)[
φj+2 − 2φj + φj−2

`
] = 0 (27)
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Figure 10: Optimal expression of α for the FIC RC/OSS method. Plot of α vs. γ for the
interior nodes.

The analytical solution of the steady-state form of problem (17) in the 1D space with only
Dirichlet boundary conditions and source f = 0 is,

φ(x) = φpl + (φpr − φ
p
l )

[
exp[ux/k]− 1

exp[uL/k]− 1

]
(28)

where L is the length of the 1D domain and φpl ,φ
p
r are the prescribed values of φ at the

left and right ends of the domain respectively. We now express the characteristic length in
terms of the element size as h = α `. The optimal value of the stabilization parameter α is
found by substituting the analytical solution into the stencil given in Eq.(27). This leads to
the following expression of α for the interior nodes.

α =
−1

sinh2(γ)

[
coth(γ)− 1

γ

]
(29)

where, γ is the element Peclet number given by γ = u`
2k . The plot of the parameter α vs. γ is

shown in Figure 10.
It can be seen that α ≈ 0 for γ ≥ 3. So for high Peclet numbers the formulation suggests

to use very small values of α. That is for large values of γ the formulation breaks down into
the standard Galerkin method without stabilization and one can expect spurious oscillations
in the numerical solution. The clues to reason out this behavior can be found by examining
the assembly of the linear system.

The 1D problem is discretized by linear elements and the final form of the finite element
assembly is examined. For simplicity, the nodes are numbered from left to right as shown in
Figure 11. For the interior nodes, the equation stencil is as given by Eq.(27). For the left
penultimate boundary node, here node 2 as per the numbering scheme Figure 11, we find the
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Figure 11: Node stencil for the 1D problem.

following stencil:

(
u

2
)[φ3 − φ1]− (k +

uh

2
)[
φ3 − 2φ2 + φ1

`
] + (

uh

8
)[
φ4 − 3φ2 + 2φ1

`
] = 0 (30)

For the right penultimate boundary node, i.e the node n in Figure 11, we find the following
stencil:

(
u

2
)[φn+1 − φn−1]− (k +

uh

2
)[
φn+1 − 2φn + φn−1

`
]

+ (
uh

8
)[

2φn+1 − 3φn + φn−2

`
] = 0 (31)

Thus, we see that there is a rearrangement of the equation stencils for the nodes that
lie next to the boundary. The stencils for the boundary nodes also gets rearranged, but we
do not consider them here as the focus here is to deal problems with Dirichlet boundary
conditions. The deviation of the nodal equations for the penultimate nodes from the interior
nodes is responsible for the spurious oscillations. It has been shown using a spectral analysis
framework in [15, 16] that the asymmetry in the stencils brings about anti-diffusion even
when they are used with central difference schemes and their effect is not localized, thus
being responsible for spurious numerical oscillations. A simpler explanation would be that
the rearrangement of the stencils near the boundary require different expressions for the
stabilization parameter for those nodes.

The optimal values of the stabilization parameters for these penultimate nodes on a uni-
form mesh are as follows. Eqs.(32a) and (32b) correspond to the optimal values for the nodes
2 and n respectively. Figure 12 illustrates the variation of α with respect to γ.

α2 =
4

[2− e2γ ]

[
coth(γ)− 1

γ

]
(32a)

αn =
4

[2− e−2γ ]

[
coth(γ)− 1

γ

]
(32b)

An alternative to nodal stabilization parameters is to find optimal values of the stabi-
lization parameters for the elements adjacent to the boundary. For elements laying in the
domain interior we use the value given by Eq.(29). Denoting the stabilization parameters for
elements 1, n and in the domain interior as α(1), α(n) and α respectively, we find the following
equation stencils.
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Figure 12: Plot of optimal α (for the penultimate boundary nodes) vs. γ for the FIC RC/OSS
method.

Node 2 :

(
u

2
)[φ3 − φ1]− (

k

`
)[φ3 − 2φ2 + φ1]

− (
u

2
)[αφ3 − (α(1) + α)φ2 + α(1)φ1]

+ (
u

8
)[αφ4 + (α− α(1))φ3 − (α+ 2α(1))φ2 + (3α(1) − α)φ1] = 0 (33)

Node n:

(
u

2
)[φn+1 − φn−1]− (

k

`
)[φn+1 − 2φn + φn−1]

− (
u

2
)[α(n)φn+1 − (α(n) + α)φn + αφn−1]

+ (
u

8
)[(3α(n) − α)φn+1 − (α+ 2α(n))φn + (α− α(n))φn−1 + αφn−2] = 0 (34)

The optimal values for α(1) and α(n) are given by the Eqs.(35a) and (35b) respectively.
Figure 13 illustrates the variation of α with respect to γ.

α(1) =
4

[1− e2γ ]

[
coth(γ)− 1

γ

]
(35a)

α(n) =
4

[1− e−2γ ]

[
coth(γ)− 1

γ

]
(35b)

Remark : It is important to note that α is a signed parameter. For the domain interior, α
is negative for positive values of γ! As the optimal α on a uniform grid for the FIC RC/OSS
method is close to zero everywhere within the domain interior (Figure 10) we do not introduce
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Figure 13: Plot of optimal α (for the elements adjacent to the boundary) vs. γ for the
FIC RC/OSS method.

any artificial (unnatural) damping anywhere within the domain. The effect of boundary shock
layers can also be captured efficiently by the new expressions of α at the boundary-adjacent
elements. Thus, we see that in the transient mode the performance of the FIC RC/OSS
method using the proposed optimal α with boundary correction is similar to the standard
Galerkin method. The former method also gives nodally exact solutions (on uniform grids) in
the steady state mode unlike the spurious global oscillations produced by the later method.
Of course, all these features are favorable addenda only if the bandwidth of the amplitude
spectra of the transported function lies within the range of the phase departure wave number.

5 Numerical Examples

5.1 Example 1

In this example, we study the effect of the stabilization introduced by FIC/SUPG and
FIC RC/OSS methods for transient problems. We study the pure convection problem pri-
marily for two reasons. First, the problem becomes simple as the dispersion effect of natural
diffusion is sidelined, thus allowing us to study the effects of the diffusion introduced by the
stabilization methods. Next, the convection dominated problem is the primary concern of sta-
bilization methods. The domain of interest is x ∈ [0, 10]. The problem data are k = 1×10−30,
u = 1.0, time increment θ = 0.01 and the 1D space is discretized by 100 linear elements with
uniform mesh size. Thus, ` = 0.1. The Peclet number for this problem is γ = 5 × 1028

(γ ≈ ∞). The Courant number is C = 0.1. We have also chosen α = 1.0, the optimal
value for SUPG in this case, throughout the simulations. This choice is made just to study
the effect of the artificial diffusion introduced by the FIC RC/OSS method within the inte-
rior of the domain using a non-optimal value for α. Recall that the optimal value of α for
the FIC RC/OSS method in this case is ≈ 0, thus behaving just like the standard Galerkin
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method in the domain interiors. The discretization in time is done by the following schemes:
Crank-Nicholson, backward Euler and BDF2 schemes.

Figure 14 shows the results obtained when a narrow Gaussian pulse centered at x = 3.0 is
taken as the initial solution. The equation for the initial solution is φo(x) = exp[−8(x− 3)2].
The numerical solution at time 3s is examined. The solutions obtained using a lumped
and consistent T matrix in the formulation are also examined. The idea is to validate the
conclusions that can be drawn from the DDR plots. The pulse width of the Gaussian function
is chosen as to guarantee that the bandwidth of the amplitude spectra of this function is
just less than ξconsistent

d , the phase departure wave-number using a consistent T matrix. As

ξlumped
d ≤ ξconsistent

d , one should expect incorrect superpositions of the wave trains due to their
phase differences from the former. This leads to a train of wiggles as seen in the numerical
solution when T is lumped (Figure 14).

It is interesting that the standard Galerkin method without any stabilization and by using
a consistent T matrix yields very accurate results. The other methods using a consistent T
create a slight bump at the foot of the Gaussian bell. This is because of the damping associated
with those methods for the significant wavenumbers (ξ∗ ≤ ξ∗d). We also notice that using a
consistent T, the damping associated with the FIC/SUPG method is less than that for the
FIC RC/OSS method. The differences are insignificant for the T-lumped case.

5.2 Example 2

In this example, we illustrate the effect of the variation of the Courant number on the DDR.
The problem data are the same as in Example 5.1. Time integration is performed by the
Crank-Nicholson scheme. Two initial functions are considered : a narrow Gaussian pulse
centered at x = 3.0 as defined in Example 5.1 and a square pulse function defined by φo(x) =
1.0 if x ∈ [2, 4] else φo(x) = 0.0. The spectra of the square pulse is broad and the bandwidth
extends beyond the ξd of all the methods considered here. In other words, in the absence of
damping this function will exhibit numerical dispersion. In this example only the consistent
T matrix is used.

First we note that for the higher Courant number (here C = 1.0) the Gaussian pulse
exhibit numerical dispersion even when a consistent T matrix is used (Figure 15). As C
is reduced to 0.4 and 0.1 we notice that the dispersion errors are minimized. As discussed
earlier in §3.4 the FIC/SUPG method with C = 0.4 should exhibit a better performance over
the FIC RC/OSS method. Unfortunately the gain in the DDR for the higher wavenumbers
does not materialize in the simulated results. The solutions for the FIC/SUPG and the
FIC RC/OSS methods are nearly the same for both the initial solutions (Figure 15). This is
because all those wavenumbers suffer high damping. As =(ω∗h) does not vary with C (Figure
6), Figure 2 may be referred for the amplification.

5.3 Example 3

In this example, we study the transport of a periodic sine wave with angular wave-number
ξo = 7.5. The problem data is the same as in Example 5.1. The corresponding value of
ξ∗ = 0.238. Time integration is performed by the Crank-Nicholson scheme. The idea here is
to study the effect of the group velocity in the numerical simulation. The initial function and
the boundary condition prescribed at the left boundary are as follows:

f(x, 0) = sin(ξox) (36)
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Figure 14: Example 1: transport of a Gaussian pulse. Solutions at 3s for the Galerkin,
FIC/SUPG and FIC RC/OSS methods using lumped (on left) and consistent (on right) T
matrix are shown; Time discretization is done by the Crank-Nicholson, backward Euler and
BDF2 schemes. α = 1.0 is used.

25



0 1 2 3 4 5 6 7 8 9 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x

Φ
Gaussian Bell − Consistent − Courant 0.1 − Time: 3.00 s

Exact
Galerkin
FIC/SUPG
FIC_RC/OSS

0 1 2 3 4 5 6 7 8 9 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

x

Φ

Square Pulse − Consistent − Courant 0.1 − Time: 3.00 s

Exact
Galerkin
FIC/SUPG
FIC_RC/OSS

0 1 2 3 4 5 6 7 8 9 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x

Φ

Gaussian Bell − Consistent − Courant 0.4 − Time: 3.00 s

Exact
Galerkin
FIC/SUPG
FIC_RC/OSS

0 1 2 3 4 5 6 7 8 9 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

x

Φ
Square Pulse − Consistent − Courant 0.4 Time: 3.00 s

Exact
Galerkin
FIC/SUPG
FIC_RC/OSS

0 1 2 3 4 5 6 7 8 9 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x

Φ

Gaussian Bell − Consistent − Courant 1.0 − Time: 3.00 s

Exact
Galerkin
FIC/SUPG
FIC_RC/OSS

0 1 2 3 4 5 6 7 8 9 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

x

Φ

Square Pulse − Consistent − Courant 1.0 Time: 3.00 s

Exact
Galerkin
FIC/SUPG
FIC_RC/OSS

Figure 15: Example 2: transport of a Gaussian and square pulse. Solutions at 3s for the
Galerkin, FIC/SUPG and FIC RC/OSS methods using a consistent T matrix and for Courant
number 0.1, 0.4 and 1.0; Time discretization performed by Crank-Nicholson scheme. α = 1.0
is used.
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f(0, t) = sin(uξot) (37)

The DDR predicts a group velocity V lumped
g ≈ 0.75 and V consistent

g ≈ 1.0 for ξ∗ = 0.238
using a lumped and consistent T matrices, respectively (Figure 9). This property is exhibited
in the numerical solution where we find that the wave train moves at a different speed from the
one assigned. The results are accurate using a consistent T matrix (Figure 16). The damping
introduced by the stabilization methods are also in agreement with the one predicted by the
DDR of the problem. Using a consistent T matrix the amplifications for the FIC/SUPG
and the FIC RC/OSS methods for α = 1.0 and the wavenumber ξo = 7.5 are ≈ 0.7 and 0.3,
respectively, after 3s (Figure 2). The corresponding values for the T-lumped case are≈ 0.4 and
0.32. The numerical results are in agreement with this prediction. We note that the numerical
damping associated with the FIC/SUPG method is less than that of the FIC RC/OSS method
for the same value of α. An interesting result is that when the expressions (Eqs. 29,35) for α
are used for the FIC RC/OSS method, no damping takes place as it behaves similar to the
Galerkin method in the interior domain. The numerical solution in this case coincides with
that shown for the Galerkin method.

5.4 Example 4

In this example, we explore the performance of the stabilization parameter α given by Eqs.
(29) and (35) for the steady state problem using the FIC RC/OSS method. The domain of
interest is x ∈ [0.0, 1.0]. The problem data are k = 0.001, u = 1.0 and f = 1.0. For the ease
of notation and further reference we define the following:

αa =

[
coth(γ)− 1

γ

]

αb =



4

[1− e2γ ]

[
coth(γ)− 1

γ

]
, element 1

4

[1− e−2γ ]

[
coth(γ)− 1

γ

]
, element n

−1

sinh2(γ)

[
coth(γ)− 1

γ

]
, else

First, we study the solution on a uniform mesh consisting of 20 linear elements (` = 0.05).
We consider the cases when f = 0 and f = 1.0. The numerical solutions of the FIC/SUPG
method using the stabilization parameter as αa and of the FIC RC/OSS method using αa and
αb are presented in Figure 17. We note that the new definition for the stabilization parameter
αb is optimal for the uniform mesh. The boundary correction introduced in Eq.(35) also takes
effect.

Next, we study the solution on a non-uniform grid consisting of 15 elements. The node
coordinates of the discrete 1D space are given by x = {0, 0.095, 0.191, 0.2866, 0.382, 0.477,
0.573, 0.656, 0.728, 0.789, 0.841, 0.885, 0.922, 0.953, 0.979, 1}. We note that the solution
of the FIC/SUPG method is superior to that obtained by the FIC RC/OSS method. The
later method gives the sharp boundary oscillations using the parameter αa (also appears on
uniform grids). The solution of the FIC RC/OSS method using αb on the non-uniform grid
is slightly corrupted with weak node-to-node spurious oscillations.
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Figure 16: Example 3: transport of a sinusoidal wave. Solutions at 1s and 3s for the Galerkin,
FIC/SUPG and FIC RC/OSS methods using a lumped (on left) and consistent (on right) T
matrix; Time discretization done by the Crank-Nicholson scheme. α = 1.0 is used.
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Figure 17: Example 4: steady-state solutions on uniform and nonuniform grids for the
FIC/SUPG and FIC RC/OSS methods. αa := [coth(γ) − γ−1]. αb is evaluated via the
Eqs. (29) and (35)

29



6 Conclusion

A detailed transient analysis of a consistency recovery method (FIC RC/OSS) with respect
to the Galerkin and FIC/SUPG methods has been done. The discrete dispersion relations for
the above methods using the trapezoidal and BDF2 time integration schemes are presented.
The phase departure wavenumber (ξd) is greater when a consistent matrix for the transient
terms is used. ξd proportionally influences the range of wavenumbers that have a group
velocity close to the convection velocity. The DDR plots predict that the gain in the value
of ξd from the lumped T case to the consistent T case gradually decreases with the Courant
number C. An exception to this is on a certain lower range of C for the FIC/SUPG method.
Unfortunately, this gain is seldom realized as those higher wavenumbers are damped away.
The contour plots of log[<(|ω∗h − ω∗|)] are very similar for the Galerkin, FIC/SUPG and
the FIC RC/OSS methods except for the exception mentioned earlier. Neither is the change
significant with the choice of the time integration schemes considered. This suggests that
the role of the stabilization terms in the improvement of the DDR is insignificant and the
enhancement can be achieved only by virtue of the resolution in space and time. It is shown
that for the same value of the stabilization parameter α, the damping associated with the
FIC RC/OSS method is slightly greater than that of the FIC/SUPG method.

It is shown that, unlike the FIC/SUPG method, the FIC RC/OSS method introduces
a certain rearrangement in the equation stencils at nodes on and adjacent to the domain
boundary. Thus using a uniform expression for α will lead to localized oscillations at the
boundary. These oscillations are notable in the convection dominated case. When diffusion
is at par with convection, the solution has a smooth profile and these local oscillations are
insignificant even though they exist. A proposal for α that gives optimal results for the steady-
state 1D convection diffusion problem on uniform grids is made for the FIC RC/OSS method.
An interesting result is that when the new expressions for α are used for the FIC RC/OSS
method, no damping takes place as α ≈ 0 in the domain interior. The numerical solution in
the transient case coincides with that for the Galerkin method and in the steady state, unlike
the Galerkin method, it is stable. Unfortunately, using this new expression for α, dispersion
errors whenever present (for instance, the transport of a square pulse), cannot be controlled
and also the steady state solution has weak node-to-node oscillations on a non-uniform grid.
On the basis of these results, it appears that with respect to the stabilization of convection,
the numerical performance of the FIC/SUPG method is better as one can control to some
extent the dispersive errors and at the same time we can assure the stability of the steady-state
solution.

Finally, it can be verified that the FIC RC/OSS system matrix obtained using the optimal
stabilization parameter (on uniform grids) is neither a monotone matrix nor a matrix of
positive type. Although, it verifies the necessary and sufficient condition for a DMP to hold.
Unfortunately, it is difficult to identify a priori the matrices that satisfy this necessary and
sufficient condition unlike the matrices of ’positive type’ that are easy to recognize. This
poses a strategical difficulty in the design of discontinuity capturing methods. Due to these
difficulties we currently do not prefer the consistency recovery method in the stabilization of
convection.
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[5] Eugenio Oñate. Possibilities of finite calculus in computational mechanics. International
Journal for Numerical Methods in Engineering, 60(1):255–281, May 2004.
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